-- MySQL dump 10.10 -- -- Host: localhost Database: SCIEnce -- ------------------------------------------------------ -- Server version 5.0.27-log /*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */; /*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */; /*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */; /*!40101 SET NAMES utf8 */; /*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */; /*!40103 SET TIME_ZONE='+00:00' */; /*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */; /*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */; /*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */; /*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */; -- -- Table structure for table `om_cass` -- DROP TABLE IF EXISTS `om_cass`; CREATE TABLE `om_cass` ( `cas_id` bigint(20) unsigned NOT NULL auto_increment, `cas_name` varchar(64) default NULL, PRIMARY KEY (`cas_id`), UNIQUE KEY `cas_id` (`cas_id`) ) ENGINE=MyISAM AUTO_INCREMENT=10 DEFAULT CHARSET=latin1; -- -- Dumping data for table `om_cass` -- LOCK TABLES `om_cass` WRITE; /*!40000 ALTER TABLE `om_cass` DISABLE KEYS */; INSERT INTO `om_cass` VALUES (1,'Maple'),(2,'Magma'),(3,'Mathematica'),(4,'Maxima'),(5,'WIRIS'),(6,'Cinderella'),(7,'GAP'),(8,'Singular'),(9,'MathDox Player'); /*!40000 ALTER TABLE `om_cass` ENABLE KEYS */; UNLOCK TABLES; -- -- Table structure for table `om_cd_cas` -- DROP TABLE IF EXISTS `om_cd_cas`; CREATE TABLE `om_cd_cas` ( `om_cd_cas_id` bigint(20) unsigned NOT NULL auto_increment, `cd_id` bigint(20) default NULL, `cas_id` bigint(20) default NULL, `refurl` varchar(512) default NULL, `demourl` varchar(512) default NULL, PRIMARY KEY (`om_cd_cas_id`), UNIQUE KEY `om_cd_cas_id` (`om_cd_cas_id`), UNIQUE KEY `cd_id` (`cd_id`,`cas_id`) ) ENGINE=MyISAM AUTO_INCREMENT=133 DEFAULT CHARSET=latin1; -- -- Dumping data for table `om_cd_cas` -- LOCK TABLES `om_cd_cas` WRITE; /*!40000 ALTER TABLE `om_cd_cas` DISABLE KEYS */; INSERT INTO `om_cd_cas` VALUES (31,88,4,NULL,NULL),(32,88,5,NULL,NULL),(29,88,1,NULL,NULL),(30,88,3,NULL,NULL),(28,63,5,NULL,NULL),(27,63,4,NULL,NULL),(26,63,3,NULL,NULL),(39,9,5,NULL,NULL),(38,9,4,NULL,NULL),(37,9,3,NULL,NULL),(36,9,1,NULL,NULL),(43,83,4,NULL,NULL),(42,83,3,NULL,NULL),(44,132,1,NULL,NULL),(45,132,3,NULL,NULL),(49,132,4,NULL,NULL),(47,132,5,NULL,NULL),(50,62,1,NULL,NULL),(51,62,3,NULL,NULL),(52,62,5,NULL,NULL),(53,57,1,NULL,NULL),(54,57,3,NULL,NULL),(55,57,4,NULL,NULL),(56,57,5,NULL,NULL),(57,117,1,NULL,NULL),(58,117,3,NULL,NULL),(59,117,4,NULL,NULL),(60,117,5,NULL,NULL),(61,89,3,NULL,NULL),(62,89,4,NULL,NULL),(63,89,5,NULL,NULL),(64,116,1,NULL,NULL),(65,116,3,NULL,NULL),(66,116,4,NULL,NULL),(67,116,5,NULL,NULL),(68,94,1,'',''),(69,94,3,'',''),(70,94,4,'',''),(71,94,5,'',''),(72,58,1,NULL,NULL),(73,58,3,NULL,NULL),(74,58,4,NULL,NULL),(75,58,5,NULL,NULL),(76,51,1,NULL,NULL),(77,51,3,NULL,NULL),(78,51,5,NULL,NULL),(79,103,1,NULL,NULL),(80,103,3,NULL,NULL),(81,103,4,NULL,NULL),(82,103,5,NULL,NULL),(83,71,4,NULL,NULL),(84,71,5,NULL,NULL),(85,121,1,NULL,NULL),(86,121,3,NULL,NULL),(87,121,5,NULL,NULL),(88,81,1,NULL,NULL),(89,81,3,NULL,NULL),(90,81,4,NULL,NULL),(91,81,5,NULL,NULL),(92,36,1,NULL,NULL),(93,36,5,NULL,NULL),(94,86,1,NULL,NULL),(95,86,3,NULL,NULL),(96,14,1,NULL,NULL),(97,14,4,NULL,NULL),(98,14,3,NULL,NULL),(99,14,5,NULL,NULL),(100,97,1,NULL,NULL),(101,97,3,NULL,NULL),(102,97,4,NULL,NULL),(103,97,5,NULL,NULL),(105,77,5,NULL,NULL),(106,77,1,NULL,NULL),(107,110,1,NULL,NULL),(108,110,3,NULL,NULL),(109,110,4,NULL,NULL),(110,110,5,NULL,NULL),(111,130,3,NULL,NULL),(112,130,5,NULL,NULL),(113,8,1,NULL,NULL),(114,8,3,NULL,NULL),(115,8,4,NULL,NULL),(116,8,5,NULL,NULL),(117,25,3,NULL,NULL),(118,25,4,NULL,NULL),(119,25,5,NULL,NULL),(120,35,3,NULL,NULL),(121,35,5,NULL,NULL),(122,99,5,NULL,NULL),(126,46,5,NULL,NULL),(125,46,3,NULL,NULL),(127,107,3,NULL,NULL),(128,107,5,NULL,NULL),(129,112,5,NULL,NULL),(130,11,3,NULL,NULL),(131,11,4,NULL,NULL),(132,11,5,NULL,NULL); /*!40000 ALTER TABLE `om_cd_cas` ENABLE KEYS */; UNLOCK TABLES; -- -- Temporary table structure for view `om_cd_cas_with_count` -- DROP TABLE IF EXISTS `om_cd_cas_with_count`; /*!50001 DROP VIEW IF EXISTS `om_cd_cas_with_count`*/; /*!50001 CREATE TABLE `om_cd_cas_with_count` ( `cd_id` bigint(20), `cas_id` bigint(20), `cnt_tot` bigint(21), `cnt_sup_enc` decimal(25,0), `cnt_sup_dec` decimal(25,0) ) */; -- -- Table structure for table `om_cds` -- DROP TABLE IF EXISTS `om_cds`; CREATE TABLE `om_cds` ( `cd_id` bigint(20) unsigned NOT NULL auto_increment, `cd_name` varchar(64) default NULL, `description` blob, PRIMARY KEY (`cd_id`), UNIQUE KEY `cd_id` (`cd_id`) ) ENGINE=MyISAM AUTO_INCREMENT=137 DEFAULT CHARSET=latin1; -- -- Dumping data for table `om_cds` -- LOCK TABLES `om_cds` WRITE; /*!40000 ALTER TABLE `om_cds` DISABLE KEYS */; INSERT INTO `om_cds` VALUES (3,'plangeo1','This CD defines symbols for planar Euclidean geometry.'),(4,'dimensions1','This CD defines symbols which represent basic physical dimensions.'),(5,'plangeo4','This CD defines symbols for planar Euclidean geometry.\nIn particular, it is concerned with projective and affine coordinates\nof points and lines.'),(6,'units_metric1','This CD defines symbols to represent the basic physical units in the SI\n(syst\\\'eme international) system of units. It should probably be renamed\nunits_si.'),(7,'field3','A CD of \nfunctions for basic constructions in field theory.'),(8,'transc1','This CD holds the definitions of many transcendental\n functions. They are defined as in Abromowitz and Stegun (ninth \n printing on), with precise reductions to logs in the case of \n inverse functions.\n\n Note that, if signed zeros are supported, some strict \n inequalities have to become weak\n.\n It is intended to be `compatible\' with the MathML elements\n denoting trancendental functions.\n Some additional functions are in the CD transc2.'),(9,'arith1','This CD defines symbols for common arithmetic functions.'),(10,'magma3','Basic functions for magma theory'),(11,'set3','This CD defines more set functions.'),(12,'units_ops1','This CD defines various symbols for use in the manipulation of units.'),(13,'integer2','This CD holds a collection of basic modular arithmetic for integers.'),(14,'relation1','This CD holds the common arithmetic relations. It is intended\n to be `compatible\' with the appropriate MathML elements.'),(15,'set2','This CD defines more set functions;'),(16,'relation3','This CD holds the basic equivalence relation notions.'),(17,'linalg5','This CD contains symbols which represent a number of special types of\nmatrix.'),(18,'polyu','This CD contains operators to deal with polynomials and more precisely \n Univariate Polynomials.\n Note that recursive polynomials are regarded as univariates in their most\n significant variable (as defined by the order in PolynomialRingR:\n the first variable to appear is the most significant),\n with monomials in decreasing order of exponent, and coefficients\n being polynomials in the rest of the variables, and therefore univariates\n are a special case. This is provided as a separate CD to allow for \n univariate-only operations (e.g. composition) and for systems that only\n understand univariates, e.g. NTL.'),(19,'ecc','Extended Calculus of Constructions Primitives\n Initial version: O. Caprotti (July 1, 1999)\n Revised: O. Caprotti (September 8, 1999)'),(20,'units_sts','This CD holds the units and dimension symbols used by the OpenMath Small\n Type System, when handling units and dimensions.'),(21,'s_dist1','This CD holds the definitions of the basic statistical functions\n used on random variables. It is intended to be\n `compatible\' with the MathML elements representing statistical\n functions.'),(22,'icc','ICC Typing Attributes for OM\n \n Initial version: O. Caprotti (July 1, 1999)'),(23,'linalg3','This CD treats matrices and vectors in a column oriented fashion\n (using matrixcolumn\'s).'),(24,'groupname1','Well known groups in group theory'),(25,'veccalc1','This CD contains symbols to represent functions which are concerned\nwith vector calculus.'),(26,'polyslp','This CD contains operators to deal with polynomials and more precisely \n polynomials held in Straight Line Program representation.'),(27,'polygb','This CD contains operators for Groebner basis computations with polynomial expressions.\n It is derived from surgery of polyd.'),(28,'metagrp','This is a content dictionary to represent Content Dictionary\nGroup Files, so that they may be encoded as OpenMath\nObjects, which is a possible way of passing this information between\nOpenMath Applications.'),(29,'ringname1','A CD of \nnames of frequently used rings in ring theory.'),(30,'semigroup1','Basic functions for semigroup theory'),(31,'permgp1','A CD of functions for permutation groups'),(32,'group5','A CD of \nfunctions for relating group elements to their images in quotients.'),(33,'polyd1','This CD contains operators to deal with polynomials and more precisely \n Distributed Multivariate Polynomials.'),(34,'graph2','This CD defines symbols for handling directed and undirected graphs.\n Authored by Arjeh---to be merged with version of Erik Postma.'),(35,'directives1','The primal objective of OpenMath objects is to represent mathematical\n expressions. In this Content Dictionary another objective is\n addressed, namely to express an action related to a mathematical\n expression. Such a request for an action is generally referred to\n as a query. The specific queries are called directives. In this CD\n we define some. An entity (software) carrying out the query is\n referred to as a service. The service might return an OpenMath\n object. To formalize this object, we also introduce the symbol\n response in this CD.\n\namc 2004-03-18: added the directive explore.\namc 2004-03-24: removed redundancies.'),(36,'piece1','This CD is intended to be compatible with the corresponding\n elements in Content MathML 2.\n\n In this CD we give a set of operators for piece-wise defined expressions.'),(37,'units_us1','This CD defines symbols to represent U.S. customary unit measures.'),(38,'polysts','This CD holds the polynomial symbols used by the OpenMath Small Type System.\n PolynomialRing is the equivalent of an Axiom category, whereas \n PolynomialRingD and PolynomialRingR are functors returning elements of that\n category, polynomial rings with a specific representation (at the abstract\n OMtree level)'),(39,'semigroup3','Semigroup constructions'),(40,'polynomial2','This CD holds a collection of basic modular arithmetic for univariate polynomials over rings.\nThe data structures for polynomials can be arithmetic expressions, for\ninstance using the ring1.expression symbol, or DMP as\nin the CD polyd1.'),(41,'semigroup2','Basic functions for semigroup theory'),(42,'monoid1','Basic functions for monoid theory'),(43,'omtypes','Types for OM\n\n Declaration of symbols for names of types of OpenMath objects\n An OpenMath object which uses any of the symbols here defined,\n has to use them in accordance with their description.\n\n Initial version: O. Caprotti'),(44,'polygb2','This CD contains operators for Groebner basis computations with\npolynomial expressions. It adds features to polygb1 like testing\nmembership of an ideal, and of the radical ideal of an ideal, and\nproviding insight as to how to change the ideal minimally so as to let\nthis happen. Suggestion:\n polygb3 is to contain a trace of the GB computation.\n polygb4 is to contain S poly'),(45,'graph1','This CD defines symbols for handling directed and undirected graphs.\nAuthored by Hans Cuypers and Erik Postma.\nThis version is edited by amc.'),(46,'list2','Several basic list functions are given in this CD.'),(47,'plangeo2','This CD defines symbols for planar Euclidean geometry.'),(48,'physical_consts1','This CD defines symbols which represent some elementary physical constants.'),(49,'setname2','This CD defines some common sets of mathematics.'),(50,'moreerrors','This symbol represents the error which is returned when an application\ndetects a lexical or syntactic error. It should have one argument\nwhich is a string, which should explain the error that occurred.'),(51,'list1','This CD is intended to be `compatible\' with MathML list\n constructs.'),(52,'group1','A CD of basic functions for group theory'),(53,'units_imperial1','This CD defines symbols to represent imperial standard measures.'),(54,'linalg7','This CD contains symbols for the construction of matrices from lists.'),(55,'semigroup','The definition of a semigroup as setoid with a\n binary operation.\n \n Initial version: O. Caprotti'),(56,'monoid2','Basic functions for monoid theory'),(57,'fns1','This CD is intended to be `compatible\' with the corresponding\n elements in Content MathML.\n\n In this CD we give a set of functions concerning functions\n themselves. Functions can be constructed from expressions via a\n lambda expression. Also there are basic function functions like\n compose, etc.'),(58,'linalg2','This CD treats matrices and vectors in a row oriented fashion\n (using matrixrow\'s).'),(59,'setoid','The definition of a setoid as a set with an equivalence relations\n defined on its elements. \n \n Initial version: O. Caprotti'),(60,'polyd','This CD contains operators to deal with polynomials and more precisely \n Distributed Multivariate Polynomials.'),(61,'linalg4','This CD defines symbols for basic linear algebra.\n\n Regardless of the way of forming vectors and matrices, this CD\n deals with eigenvalues, eigenvectors and related concepts.'),(62,'complex1','This CD is intended to be `compatible\' with the MathML view of\n operations on and constructors for complex numbers.'),(63,'error','This symbol represents the error which is raised when an application\nreads a symbol which is present in the mentioned content\ndictionary, but which it has not implemented.\n\nWhen receiving such a symbol, the application should act as if it had\nreceived the OpenMath error object constructed from unhandled_symbol\nand the unhandled symbol as in the example below.'),(64,'coercions','Coercion Functions among OM Types\n Initial version: O. Caprotti'),(65,'sts','Definitions of the symbols used by the OpenMath Small Type System.'),(66,'metasig','This is a content dictionary to represent Content Dictionary\nSignature Files, so that they may be encoded as OpenMath\nObjects, which is a possible way of passing this information between\nOpenMath Applications.'),(67,'opnode','This CD contains constructors for the operators used to describe\n the operations corresponding to operation nodes which occur in\n straight line programs.'),(68,'permutation1','This CD defines permutations with finite support.\n\nIn order to make available permutations of arbitrary objects,\npermutations are defined as sets of cycles.\n\nThe set on which the permutation acts is not specified. To this end,\ncycles of length 0 or 1 do not occur in permutations.\n\nWhen viewed as the set of cycles which are its arguments, the symbol\npermutation has a normal form constructor.\n\nAll symbols defined in this CD may appear as the head of an\napplication. For such symbols, we distinguish between functions and\nconstructors. A function is thought of as a mathematical function,\nwhich can be evaluated on its arguments, a constructor uses its\narguments as fields of a structure. (In principle, the arguments of a constructor should\nbe accessible; we have not introduced separate symbols to enable\naccess because the `destruction\' of the mathematical object can take place in phrasebooks.)\n\nThe constructors in this CD are cycle, permutation, list_perm, and endomap.\n\nThe operations inverse, left_compose, right_compose are also defined\nin this CD, although the most general purpose version already occurs\nin fns1, fns2. The reasons is two-fold: first, strictly\nspeaking, our permutations are not maps, and so these notions havfe to\nredefined. A more practical reason is that with dynamical loading, it\nis easier to encode and decode a new symbol in the CD at hand rather\nthan a symbol in a CD that is previously dealt with.\n\nRevision 0.1: fix added; error in support example corrected.\nRevision 0.2: added endomap. Help of Henny Wilbrink.'),(69,'permgp2','A CD of functions for permutation groups.\n Primarily for defining the best known permutation groups.'),(70,'relation4','This CD holds further definitions of symbols that represent\n relations in some way; at present this only includes a definition\n for n-ary equality.'),(71,'mathmltypes','This CD holds symbols denoting various types of numbers, vectors\n and similar constructs. Principally these are required for\n compatibility with MathML.'),(72,'polyd2','This CD defines symbols for ordering of monomial for\n Distributed Multivariate Polynomials, which were defined in polyd1.'),(73,'altenc','A CD of alternative encoding symbols \n\nThis CD is motivated in part by a desire to maintain compatibility\nwith the MathML semantics element,\n\nIn order for it to be possible for OpenMath to express symbols in an\nalternative encoding (this facilitates the exact translation and\nrepresentation of objects) we use the OpenMath attribution nodes\n(which performs a similar role to the MathML semantics nodes). The\nformats and descriptions of common syntaxes are held in this CD; at\npresent this only includes LaTeX and MathML.'),(74,'arith2','Further to the basic arithmetic functions, we define some more common\narithmetic operations. This includes a commutative times which\nexhibits the use of inheritance within the CD\'s.'),(75,'meta','This is a content dictionary to represent content dictionaries, so\nthat they may be passed between OpenMath compliant application in a\nsimilar way to mathematical objects.\n\nThe information written here is taken from chapter 4 of the current\ndraft of the \"OpenMath Standard\".'),(76,'cc','CC Type Attribution for OM\n\n \n Initial version: O. Caprotti (May 20, 1999) \n Revised: O. Caprotti (Aug 20, 1999), split-up so that it uses\n symbols from lc, omtypes.'),(77,'s_data1','This CD holds the definitions of the basic statistical functions\n used on sample data. It is intended to be `compatible\' with the\n MathML elements representing statistical functions, though it does\n not cover the concept of random variable which is mentioned in\n MathML.'),(78,'plangeo5','This CD contains symbols\n for generating polynomial systems from affine planar geometry configurations.'),(79,'indnat','Inductive definition of natural numbers\n Initial version: O.C (Jan. 2000)'),(80,'polynomial3','This CD holds a collection of basic modular arithmetic for polynomials over fields.\nThe data structures for polynomials can be arithmetic expressions, for\ninstance using the ring1.expression symbol, or DMP as\nin the CD polyd1.'),(81,'nums1','This CD is intended to be `compatible\' with the MathML view of\n constructors for numbers (integers to an arbitrary base,\n rationals) and symbols for some common numerical constants.\n\n This CD holds a set of symbols for creating numbers, including\n some defined constants (i.e. nullary constructors).'),(82,'ring2','Basic functions for homomorphisms in ring theory'),(83,'bigfloat1','This CD provides a common representation of \"bigfloats\" in a mantissa/\n radix/exponent format.\n There is a further version, which provides an opportunity to state a\n precision (only required in a different radix).\n No operations are defined here -- see arith and alg.'),(84,'typesorts','Type Sorts as used in the Calculus of \nConstructions and in its Extensions.\n \nInitial version: O. Caprotti'),(85,'magma2','Basic functions for magma theory'),(86,'quant1','This CD holds the definitions of the basic universal (\"for all\")\n quantifier and existential (\"there exists\") quantifier. It is\n intended to be `compatible\' with the MathML elements representing\n these quantifiers.'),(87,'semigroup4','A CD of \nfunctions for morphisms of semigroups.'),(88,'alg1','A CD of basic algebraic concepts\n\nAt present this CD only holds definitions of zero and one. They are\ndeliberately defined here without specifying any particular structure\n(e.g. a group) to which they correspond.'),(89,'interval1','This CD holds symbols which describe both discrete and continuous\n 1-dimensional intervals (with open/closed end points).'),(90,'field1','A CD of basic functions for field theory'),(91,'transc3','This CD holds the definitions of many transcendental and related\n functions. They are defined as multi-valued functions with precise\n reductions to logs in the case of inverse functions. Note that we use\n the same names as in the single-valued case, even though it would be\n traditional to render them with capital letters. In sum\n is multi-valued, while\n is single-valued. \n Note that in many cases A+S only states the log restrictions under some\n circumstances: JHD has proved (22.8.2002) all the inverse trig. ones'),(92,'combinat1','This CD defines some basic combinatorics definitions.'),(93,'group4','A CD of sets constructed from groups'),(94,'linalg1','Operations on Matrices (independent of the matrix representation).'),(95,'multiset1','This CD defines the set functions and constructors for basic\n multiset theory. It is intended to be `compatible\' with the\n corresponding elements in MathML i.e. set operations acting\n on sets of type=multiset.'),(96,'ring3','A CD of \nfunctions for basic constructions in ring theory.\nThe quaternion definition is still very shaky.'),(97,'rounding1','A CD of basic rounding concepts'),(98,'group3','A CD of group constructions'),(99,'fns3','This CD holds further functions concerning functions themselves. A\n particularly interesting function is\n\n function\n\n which constructs a function with given domain and range.'),(100,'ring5','A CD of \nfunctions for relating ring elements their images in quotient rings'),(101,'ring1','A CD of basic functions for ring theory'),(102,'polyr','This CD contains operators to deal with polynomials and more precisely \n Recursive Polynomials.\n Note that polynomials are regarded as univariates in their most\n significant variable (as defined by the order in PolynomialRingR:\n the first variable to appear is the most significant),\n with monomials in decreasing order of exponent, and coefficients\n being polynomials in the rest of the variables. This means that \n polynomials have a unique representation, except for the fact that\n yz \\in Z[x,y,z] could also be represented as x^0yz. This latter is\n discouraged, but currently not expressly forbidden.'),(103,'logic1','This CD holds the basic logic functions.'),(104,'sigma','Sigma Types for OM\n\n Declaration of symbols for types and objects\n An OpenMath object which uses any of the symbols here defined,\n has to use them in accordance with the definitions in ESPRIT \n deliverable 1.3.2b .\n\n Initial version: O. Caprotti and H. Elbers (July 2, 1998)\n Updated: O. Caprotti (March 5, 1999)\n Updated: O. Caprotti (May 20, 1999) added \"mapsto\", made a \n CDGroup'),(105,'polyd3','This CD contains conversions between different data structures for polynomials.'),(106,'polyoperators1','We define several polynomial operators.'),(107,'list3','Several basic list functions related to length are given in this CD.'),(108,'arith3','Extended GCD'),(109,'plangeo3','This CD defines symbols for planar Euclidean geometry related to distance.'),(110,'set1','This CD defines the set functions and constructors for basic\n set theory. It is intended to be `compatible\' with the\n corresponding elements in MathML.'),(111,'magma1','Basic functions for magma theory'),(112,'prog1','A CD for basic algorithmic concepts. We define the minimal machinery to write \nsmall programs in OpenMath encoding.'),(113,'plangeo6','This CD defines symbols for planar Euclidean geometry related to conics.\namc: 18 March 2004 added are_on_conic'),(114,'field4','A CD of \nfunctions for morphisms of fields.'),(115,'fns2','This CD holds further functions concerning functions themselves. A\n particularly interesting function is\n\n apply_to_list\n\n which applies an nary function to all the elements in a specified\n list. For example, such a function can be used to form sums and\n products in conjunction with plus and times respectively.'),(116,'limit1','This CD holds the basic notion of the limits of unary functions\n whilst its variable tend (either from above, below or both\n sides) to a particular value.'),(117,'integer1','This CD holds a collection of basic integer functions.\n\n This CD is intended to be `compatible\' with the corresponding elements\n in Content MathML.'),(118,'poly','This CD contains generic operators to deal with various forms\n of polynomials. The arithmetic operators from arith1 etc. are valid\n on these polynomials: there is also the operator \"power\" from this\n CD, which creates formal powers. \n More specific operations for Distributed Multivariate Polynomials\n can be found in polyd.ocd, and for Recursive polynomials in polyr.ocd.'),(119,'monoid3','Monoid constructions'),(120,'transc2','This CD holds the definition of a two-argument version of arctan,\n useful for defining the argument of a complex number, and equivalent\n to Fortran\'s ATAN2 function.\n It also holds a definition of the unwinding number, useful for writing\n correct relationships between elementary functions.'),(121,'minmax1','This CD holds the definitions of min and max.'),(122,'group2','A CD of functions like homomorphisms for groups'),(123,'polynomial1','This CD holds a collection of basic constructs for univariate polynomials over rings.\nThe data structures for polynomials can be arithmetic expressions, for\ninstance using the ring1.expression symbol, or DMP as\nin the CD polyd1.'),(124,'units_siprefix1','This CD defines symbols for the SI prefixes to indicate multiplication\nby a power of 10.'),(125,'finfield1','A CD to instantiate finite fields.'),(126,'ring4','A CD of \nfunctions for further basic properties of rings'),(127,'linalg6','This CD contains symbols for the construction of some new matrices from old ones.'),(128,'relation0','Binary relations properties, equivalence relation, orders, up\n to the definition of a setoid as a set with an equivalence relations\n defined on its elements. \n Initial version: O. Caprotti'),(129,'units_time1','This CD defines symbols to represent the basic physical units of time in the SI\n(syst\\\'eme international) system of units. and therefore most other modern\nsystems such as \"Imperial\" and \"U.S.\".'),(130,'setname1','This CD defines common sets of mathematics'),(131,'field2','Basic functions for homomorphisms in field theory'),(132,'calculus1','This CD is intended to be compatible with the calculus operations\n in Content MathML.\n\n Integration is just for the univariate case and is either definite\n or indefinite.'),(133,'permut1','A CD of functions for permutations'),(134,'lc','Lambda Calculus \n\n Initial version: O. Caprotti'),(135,'fieldname1','A CD of \nfunctions for basic constructions in field theory.'),(136,'permgrp','A CD of functions for permutation groups'); /*!40000 ALTER TABLE `om_cds` ENABLE KEYS */; UNLOCK TABLES; -- -- Table structure for table `om_def_cas` -- DROP TABLE IF EXISTS `om_def_cas`; CREATE TABLE `om_def_cas` ( `om_def_cas_id` bigint(20) unsigned NOT NULL auto_increment, `def_id` bigint(20) default NULL, `cas_id` bigint(20) default NULL, `support_enc` tinyint(1) default '0', `support_dec` tinyint(1) default '0', `note` varchar(512) default NULL, PRIMARY KEY (`om_def_cas_id`), UNIQUE KEY `om_def_cas_id` (`om_def_cas_id`), UNIQUE KEY `def_id` (`def_id`,`cas_id`) ) ENGINE=MyISAM AUTO_INCREMENT=930 DEFAULT CHARSET=latin1; -- -- Dumping data for table `om_def_cas` -- LOCK TABLES `om_def_cas` WRITE; /*!40000 ALTER TABLE `om_def_cas` DISABLE KEYS */; INSERT INTO `om_def_cas` VALUES (338,102,5,1,1,NULL),(337,101,5,1,1,NULL),(336,100,5,1,1,NULL),(335,99,5,1,1,NULL),(334,98,5,1,1,NULL),(333,97,5,1,1,NULL),(332,96,5,1,1,NULL),(347,974,1,1,0,NULL),(344,599,4,1,0,NULL),(343,599,3,1,0,NULL),(346,973,1,1,0,NULL),(345,972,1,1,0,NULL),(302,102,1,1,0,NULL),(301,101,1,1,0,NULL),(300,100,1,1,0,NULL),(299,99,1,1,0,NULL),(298,98,1,1,0,NULL),(297,97,1,1,0,NULL),(296,96,1,1,0,NULL),(295,95,1,1,0,NULL),(294,94,1,1,0,NULL),(293,93,1,1,0,NULL),(292,92,1,1,0,NULL),(291,91,1,1,0,NULL),(314,102,3,1,1,NULL),(313,101,3,1,1,NULL),(312,100,3,1,1,NULL),(440,848,5,1,1,NULL),(439,852,4,1,0,NULL),(438,851,4,1,0,NULL),(437,850,4,1,0,NULL),(436,849,4,1,0,NULL),(435,848,4,1,0,NULL),(434,852,3,1,0,NULL),(433,851,3,1,0,NULL),(432,850,3,1,0,NULL),(431,849,3,1,0,NULL),(430,848,3,1,0,NULL),(429,615,4,1,1,NULL),(428,616,3,1,1,'Every type of interval implemented the same way.'),(427,615,3,1,0,NULL),(426,620,5,1,1,NULL),(425,619,5,1,1,NULL),(424,618,5,1,1,NULL),(423,617,5,1,1,NULL),(422,616,5,1,1,'WIRIS considers this interval as an open interval'),(421,615,5,1,1,NULL),(420,856,5,1,1,NULL),(419,855,5,1,1,NULL),(418,854,5,1,1,NULL),(417,853,5,1,1,NULL),(416,856,4,1,1,NULL),(415,855,4,1,1,NULL),(414,854,4,1,1,NULL),(413,853,4,1,1,NULL),(412,856,3,1,1,NULL),(411,855,3,1,1,NULL),(410,854,3,1,1,NULL),(409,853,3,1,0,NULL),(408,856,1,1,0,NULL),(407,855,1,1,0,NULL),(406,854,1,1,0,NULL),(405,853,1,0,0,NULL),(404,421,5,1,1,'In WIRIS, inverse, left_inverse, and right_inverse symbols codify at the same way and all functions are considered in Real variable'),(403,419,5,1,1,'In WIRIS, inverse, left_inverse, and right_inverse symbols codify at the same way and all functions are considered in Real variable'),(402,418,5,1,1,NULL),(401,417,5,1,1,'There is no symbol to express a lambda with more than one expression as image.'),(400,416,5,1,1,'In WIRIS, inverse, left_inverse, and right_inverse symbols codify at the same way and all functions are considered in Real variable'),(399,414,5,1,1,NULL),(398,412,5,1,1,NULL),(397,417,4,1,0,NULL),(396,418,3,1,0,NULL),(395,417,3,1,1,NULL),(394,414,3,1,0,NULL),(393,417,1,1,0,NULL),(392,462,5,1,1,NULL),(391,461,5,1,1,NULL),(390,460,5,1,1,NULL),(389,459,5,1,1,NULL),(388,458,5,1,1,NULL),(387,457,5,1,1,NULL),(386,462,3,1,1,NULL),(385,461,3,1,1,NULL),(384,460,3,1,1,NULL),(383,459,3,1,0,NULL),(382,458,3,1,1,NULL),(381,457,3,1,1,NULL),(380,462,1,1,0,NULL),(379,461,1,1,0,NULL),(378,460,1,1,0,NULL),(377,459,1,1,0,NULL),(376,458,1,1,0,NULL),(375,457,1,1,0,NULL),(364,976,5,1,1,NULL),(363,975,5,1,1,NULL),(362,974,5,1,1,NULL),(361,973,5,1,1,NULL),(360,972,5,1,1,NULL),(374,976,4,1,0,NULL),(373,975,4,0,0,NULL),(372,974,4,1,0,NULL),(371,973,4,1,0,NULL),(370,972,4,1,0,NULL),(354,976,3,1,0,NULL),(353,975,3,1,0,NULL),(352,974,3,1,0,NULL),(351,973,3,1,0,NULL),(350,972,3,1,0,NULL),(349,976,1,1,0,NULL),(348,975,1,1,0,NULL),(248,614,1,1,0,NULL),(247,613,1,1,0,NULL),(246,465,5,0,1,NULL),(245,463,5,0,1,NULL),(244,463,3,0,1,NULL),(253,613,5,1,0,'WIRIS one is encoded as integer'),(252,614,4,1,0,''),(251,613,4,1,0,NULL),(250,614,3,1,0,NULL),(249,613,3,1,0,NULL),(326,102,4,1,1,NULL),(331,95,5,1,1,NULL),(330,94,5,1,1,NULL),(329,93,5,1,1,NULL),(328,92,5,1,1,NULL),(327,91,5,1,1,NULL),(254,614,5,1,0,'WIRIS zero is encoded as integer'),(311,99,3,1,1,NULL),(310,98,3,1,1,NULL),(309,97,3,1,1,NULL),(308,96,3,1,1,NULL),(307,95,3,1,1,NULL),(306,94,3,1,1,NULL),(305,93,3,1,1,NULL),(304,92,3,1,1,NULL),(303,91,3,1,1,NULL),(325,101,4,1,1,NULL),(324,100,4,1,1,NULL),(323,99,4,1,1,NULL),(322,98,4,1,1,NULL),(321,97,4,1,1,NULL),(320,96,4,1,1,NULL),(319,95,4,1,1,NULL),(318,94,4,0,0,NULL),(317,93,4,1,1,NULL),(316,92,4,1,1,NULL),(315,91,4,1,1,NULL),(441,849,5,1,1,NULL),(442,850,5,1,1,'WIRIS codes both limit both_sides as null limit.'),(443,851,5,1,1,NULL),(444,852,5,1,1,NULL),(445,851,1,1,0,NULL),(446,669,1,1,0,NULL),(447,670,1,1,0,NULL),(448,671,1,1,0,NULL),(449,672,1,1,0,NULL),(450,673,1,1,0,NULL),(451,674,1,1,0,NULL),(452,675,1,1,0,NULL),(453,669,3,1,1,NULL),(454,670,3,1,0,NULL),(455,671,3,1,0,NULL),(456,672,3,1,0,NULL),(457,673,3,1,0,NULL),(458,674,3,1,0,NULL),(459,675,3,1,0,NULL),(460,669,4,1,0,NULL),(461,670,4,1,0,NULL),(462,671,4,1,0,NULL),(463,672,4,1,0,NULL),(464,673,4,1,0,NULL),(465,674,4,1,0,NULL),(466,675,4,1,0,NULL),(467,669,5,1,1,'The decode function may be confused by other symbols when the arguments are symbolic (i.e. variables)'),(468,670,5,1,1,'The decode function may be confused by other symbols when the arguments are symbolic (i.e. variables)'),(469,671,5,1,1,'The decode function may be confused by other symbols when the arguments are symbolic (i.e. variables)'),(470,672,5,1,1,'The decode function may be confused by other symbols when the arguments are symbolic (i.e. variables)'),(471,673,5,1,1,'The decode function may be confused by other symbols when the arguments are symbolic (i.e. variables)'),(472,674,5,1,1,'The decode function may be confused by other symbols when the arguments are symbolic (i.e. variables)'),(473,675,5,1,1,'The decode function may be confused by other symbols when the arguments are symbolic (i.e. variables)'),(474,422,1,1,0,NULL),(475,423,1,1,0,NULL),(476,424,1,1,0,NULL),(477,422,3,1,0,NULL),(478,423,3,1,0,NULL),(479,424,3,1,0,NULL),(480,422,4,1,0,NULL),(481,423,4,1,0,NULL),(482,424,4,1,0,NULL),(483,422,5,1,1,NULL),(484,423,5,1,1,'The matrixrow symbol only has sense when it appears together with the matrix symbol'),(485,424,5,1,1,'In WIRIS, the constructor \"matrix\" doesn\'t understand the variables as rows'),(486,373,1,1,0,NULL),(487,374,1,1,0,NULL),(488,373,3,1,1,NULL),(489,374,3,1,0,NULL),(490,373,5,1,1,NULL),(491,374,5,1,1,NULL),(492,375,5,1,1,NULL),(493,751,1,1,0,NULL),(494,752,1,1,0,NULL),(495,753,1,1,0,NULL),(496,754,1,1,0,NULL),(497,755,1,1,0,NULL),(498,756,1,1,0,NULL),(499,757,1,1,0,NULL),(500,758,1,1,0,NULL),(501,751,3,1,0,NULL),(502,752,3,1,0,NULL),(503,753,3,1,0,NULL),(504,754,3,1,0,NULL),(505,755,3,1,0,NULL),(506,756,3,1,0,NULL),(507,757,3,1,0,NULL),(508,758,3,1,0,NULL),(509,751,4,1,1,NULL),(510,752,4,0,0,NULL),(511,753,4,1,1,NULL),(512,754,4,1,0,NULL),(513,755,4,1,1,NULL),(514,756,4,1,1,NULL),(515,757,4,1,1,NULL),(516,758,4,0,1,NULL),(517,751,5,1,1,NULL),(518,752,5,1,1,NULL),(519,753,5,1,1,NULL),(520,754,5,1,1,NULL),(521,755,5,1,1,NULL),(522,756,5,1,1,NULL),(523,757,5,1,1,NULL),(524,758,5,1,1,NULL),(525,520,4,1,0,NULL),(526,521,4,1,0,NULL),(527,522,4,1,0,NULL),(528,523,4,1,0,NULL),(529,524,4,1,0,NULL),(530,525,4,1,0,NULL),(531,526,4,1,0,NULL),(532,527,4,1,0,NULL),(533,528,4,1,0,NULL),(534,529,4,1,0,NULL),(535,530,4,1,0,NULL),(536,531,4,1,0,NULL),(537,520,5,1,1,'WIRIS translates both mathmltypes::complex_cartesian_type and setname1::C to the WIRIS symbol Complex'),(538,521,5,0,0,NULL),(539,522,5,0,0,NULL),(540,523,5,1,1,NULL),(541,524,5,1,1,'WIRIS translates both mathmltypes::integer_type and setname1::Z to the WIRIS symbol Integer'),(542,525,5,1,1,NULL),(543,526,5,1,1,NULL),(544,527,5,1,1,'WIRIS translates both mathmltypes::rational_type and setname1::Q to the WIRIS symbol Rational'),(545,528,5,1,1,'WIRIS translates both mathmltypes::real_type and setname1::R to the WIRIS symbol Real'),(546,529,5,1,1,NULL),(547,530,5,0,0,NULL),(548,531,5,1,1,NULL),(549,887,1,1,0,NULL),(550,888,1,1,0,NULL),(551,887,3,1,0,NULL),(552,888,3,1,0,NULL),(553,887,5,1,1,NULL),(554,888,5,1,1,NULL),(555,584,1,1,0,'NaN has been implemented as \"undefined\"'),(556,585,1,0,0,NULL),(557,586,1,1,0,NULL),(558,587,1,1,0,NULL),(559,588,1,1,0,NULL),(560,589,1,1,0,NULL),(561,590,1,1,0,NULL),(562,591,1,1,0,NULL),(563,584,3,1,1,NULL),(564,585,3,0,0,NULL),(565,586,3,1,1,NULL),(566,587,3,1,1,NULL),(567,588,3,1,1,NULL),(568,589,3,1,1,NULL),(569,590,3,1,1,NULL),(570,591,3,1,1,NULL),(571,584,4,0,0,NULL),(572,585,4,0,0,NULL),(573,586,4,1,1,NULL),(574,587,4,1,1,NULL),(575,588,4,1,1,NULL),(576,589,4,0,0,NULL),(577,590,4,1,1,NULL),(578,591,4,1,1,NULL),(579,584,5,0,0,NULL),(580,585,5,0,0,NULL),(581,586,5,1,1,NULL),(582,587,5,1,1,NULL),(583,588,5,1,1,NULL),(584,589,5,1,1,NULL),(585,590,5,1,1,NULL),(586,591,5,1,1,NULL),(587,275,1,1,0,NULL),(588,276,1,1,0,NULL),(589,277,1,1,0,NULL),(590,275,5,1,1,NULL),(591,276,5,1,1,NULL),(592,277,5,1,1,NULL),(593,609,1,1,0,NULL),(594,610,1,1,0,NULL),(595,609,3,1,0,NULL),(596,610,3,1,0,NULL),(597,122,1,1,0,'Throws an exception'),(598,123,1,1,0,NULL),(599,124,1,1,0,NULL),(600,125,1,1,0,NULL),(601,126,1,1,0,NULL),(602,127,1,1,0,NULL),(603,128,1,1,0,NULL),(604,122,4,0,0,NULL),(605,123,4,1,0,NULL),(606,124,4,1,0,NULL),(607,125,4,1,0,NULL),(608,126,4,1,0,NULL),(609,127,4,1,0,NULL),(610,128,4,1,0,NULL),(611,122,3,0,0,NULL),(612,123,3,1,1,NULL),(613,124,3,1,1,NULL),(614,125,3,1,1,NULL),(615,126,3,1,1,NULL),(616,127,3,1,1,NULL),(617,128,3,1,1,NULL),(618,122,5,1,1,'In WIRIs, this symbol is equivalent to ='),(619,123,5,1,1,NULL),(620,124,5,1,1,NULL),(621,125,5,1,1,NULL),(622,126,5,1,1,NULL),(623,127,5,1,1,NULL),(624,128,5,1,1,NULL),(625,703,1,1,0,NULL),(626,704,1,1,0,NULL),(627,705,1,1,0,NULL),(628,706,1,1,0,NULL),(629,703,3,1,0,NULL),(630,704,3,1,0,NULL),(631,705,3,1,0,NULL),(632,706,3,1,0,NULL),(633,703,4,1,1,NULL),(634,704,4,1,1,NULL),(635,705,4,1,1,NULL),(636,706,4,1,1,NULL),(637,703,5,1,1,NULL),(638,704,5,1,1,NULL),(639,705,5,1,1,NULL),(640,706,5,1,1,NULL),(652,570,5,1,1,NULL),(651,569,5,1,1,NULL),(650,568,5,1,1,NULL),(649,567,5,1,1,NULL),(648,566,5,1,1,NULL),(647,565,5,1,1,NULL),(653,565,1,1,0,NULL),(654,566,1,1,0,NULL),(655,567,1,1,0,NULL),(656,568,1,1,0,NULL),(657,569,1,1,0,NULL),(658,570,1,1,0,NULL),(659,796,1,0,0,NULL),(660,797,1,1,0,NULL),(661,798,1,1,0,NULL),(662,799,1,1,0,NULL),(663,800,1,1,0,NULL),(664,801,1,0,0,NULL),(665,802,1,0,0,NULL),(666,803,1,0,0,NULL),(667,804,1,0,0,NULL),(668,805,1,1,0,NULL),(669,806,1,1,0,NULL),(670,807,1,1,0,NULL),(671,808,1,1,0,NULL),(672,809,1,0,0,NULL),(673,810,1,1,0,NULL),(674,796,3,0,0,NULL),(675,797,3,1,0,NULL),(676,798,3,1,0,NULL),(677,799,3,0,0,NULL),(678,800,3,1,0,NULL),(679,801,3,1,0,NULL),(680,802,3,1,0,NULL),(681,803,3,1,0,NULL),(682,804,3,1,0,NULL),(683,805,3,1,0,NULL),(684,806,3,1,0,NULL),(685,807,3,1,0,NULL),(686,808,3,1,0,NULL),(687,809,3,0,0,NULL),(688,810,3,1,0,NULL),(689,796,4,0,0,NULL),(690,797,4,0,0,NULL),(691,798,4,1,0,NULL),(692,799,4,1,0,NULL),(693,800,4,0,0,NULL),(694,801,4,1,0,NULL),(695,802,4,1,0,NULL),(696,803,4,1,0,NULL),(697,804,4,1,0,NULL),(698,805,4,1,1,NULL),(699,806,4,0,0,NULL),(700,807,4,0,0,NULL),(701,808,4,1,0,NULL),(702,809,4,0,0,NULL),(703,810,4,0,0,NULL),(704,796,5,0,0,NULL),(705,797,5,1,1,NULL),(706,798,5,1,1,NULL),(707,799,5,1,1,NULL),(708,800,5,1,1,NULL),(709,801,5,1,1,NULL),(710,802,5,1,1,NULL),(711,803,5,1,1,NULL),(712,804,5,1,1,NULL),(713,805,5,1,1,NULL),(714,806,5,1,1,NULL),(715,807,5,1,1,NULL),(716,808,5,1,1,NULL),(717,809,5,1,1,NULL),(718,810,5,1,1,NULL),(719,958,3,1,0,NULL),(720,959,3,0,0,NULL),(721,960,3,1,0,NULL),(722,961,3,0,0,NULL),(723,962,3,1,0,NULL),(724,963,3,1,0,NULL),(725,958,5,1,1,NULL),(726,959,5,1,1,NULL),(727,960,5,0,0,NULL),(728,961,5,1,1,NULL),(729,962,5,1,1,NULL),(730,963,5,1,1,NULL),(731,64,1,1,0,NULL),(732,65,1,1,0,NULL),(733,66,1,1,0,NULL),(734,67,1,1,0,NULL),(735,68,1,1,0,NULL),(736,69,1,1,0,NULL),(737,70,1,1,0,NULL),(738,71,1,1,0,NULL),(739,72,1,1,0,NULL),(740,73,1,1,0,NULL),(741,74,1,1,0,NULL),(742,75,1,1,0,NULL),(743,76,1,1,0,NULL),(744,77,1,1,0,NULL),(745,78,1,1,0,NULL),(746,79,1,1,0,NULL),(747,80,1,1,0,NULL),(748,81,1,1,0,NULL),(749,82,1,1,0,NULL),(750,83,1,1,0,NULL),(751,84,1,1,0,NULL),(752,85,1,1,0,NULL),(753,86,1,1,0,NULL),(754,87,1,1,0,NULL),(755,88,1,1,0,NULL),(756,89,1,1,0,NULL),(757,90,1,1,0,NULL),(758,64,3,1,1,NULL),(759,65,3,1,1,NULL),(760,66,3,1,1,NULL),(761,67,3,1,1,NULL),(762,68,3,1,1,NULL),(763,69,3,1,1,NULL),(764,70,3,1,1,NULL),(765,71,3,1,1,NULL),(766,72,3,1,1,NULL),(767,73,3,1,1,NULL),(768,74,3,1,1,NULL),(769,75,3,1,1,NULL),(770,76,3,1,1,NULL),(771,77,3,1,1,NULL),(772,78,3,1,1,NULL),(773,79,3,1,1,NULL),(774,80,3,1,1,NULL),(775,81,3,1,1,NULL),(776,82,3,1,1,NULL),(777,83,3,1,1,NULL),(778,84,3,1,1,NULL),(779,85,3,1,1,NULL),(780,86,3,1,1,NULL),(781,87,3,1,1,NULL),(782,88,3,1,1,NULL),(783,89,3,1,1,NULL),(784,90,3,1,1,NULL),(785,64,4,1,1,NULL),(786,65,4,1,1,NULL),(787,66,4,1,1,NULL),(788,67,4,1,1,NULL),(789,68,4,1,1,NULL),(790,69,4,1,1,NULL),(791,70,4,1,1,NULL),(792,71,4,1,1,NULL),(793,72,4,1,1,NULL),(794,73,4,1,1,NULL),(795,74,4,1,1,NULL),(796,75,4,1,1,NULL),(797,76,4,1,1,NULL),(798,77,4,1,1,NULL),(799,78,4,1,1,NULL),(800,79,4,1,1,NULL),(801,80,4,1,1,NULL),(802,81,4,1,1,NULL),(803,82,4,1,1,NULL),(804,83,4,1,1,NULL),(805,84,4,1,1,NULL),(806,85,4,1,1,NULL),(807,86,4,1,1,NULL),(808,87,4,1,1,NULL),(809,88,4,1,1,NULL),(810,89,4,1,1,NULL),(811,90,4,1,1,NULL),(812,64,5,1,1,NULL),(813,65,5,1,1,NULL),(814,66,5,1,1,NULL),(815,67,5,1,1,NULL),(816,68,5,1,1,NULL),(817,69,5,1,1,NULL),(818,70,5,1,1,NULL),(819,71,5,1,1,NULL),(820,72,5,1,1,NULL),(821,73,5,1,1,NULL),(822,74,5,1,1,NULL),(823,75,5,1,1,NULL),(824,76,5,1,1,NULL),(825,77,5,1,1,NULL),(826,78,5,1,1,NULL),(827,79,5,1,1,NULL),(828,80,5,1,1,NULL),(829,81,5,1,1,NULL),(830,82,5,1,1,NULL),(831,83,5,1,1,NULL),(832,84,5,1,1,NULL),(833,85,5,1,1,NULL),(834,86,5,1,1,NULL),(835,87,5,1,1,NULL),(836,88,5,1,1,NULL),(837,89,5,1,1,NULL),(838,90,5,1,1,NULL),(839,182,3,1,0,NULL),(840,183,3,1,0,NULL),(841,184,3,1,0,NULL),(842,185,3,1,0,NULL),(843,182,4,1,0,NULL),(844,183,4,1,0,NULL),(845,184,4,1,0,NULL),(846,185,4,1,0,NULL),(847,182,5,1,1,NULL),(848,183,5,1,1,NULL),(849,184,5,1,1,NULL),(850,185,5,1,1,NULL),(851,265,3,1,0,NULL),(852,267,3,1,0,NULL),(853,265,5,1,1,NULL),(854,267,5,1,1,NULL),(855,726,5,1,1,NULL),(856,727,5,1,1,NULL),(892,774,3,0,0,NULL),(891,773,3,1,0,NULL),(890,772,3,1,0,NULL),(889,771,3,1,0,NULL),(888,337,5,1,1,NULL),(887,336,5,1,1,NULL),(886,333,5,1,1,NULL),(885,337,3,1,0,NULL),(884,336,3,1,0,NULL),(883,333,3,1,0,NULL),(882,339,5,1,1,NULL),(881,338,5,1,1,NULL),(880,335,5,1,1,NULL),(879,334,5,1,1,NULL),(878,339,3,1,0,NULL),(877,338,3,1,0,NULL),(876,335,3,1,0,NULL),(875,334,3,1,0,NULL),(893,775,3,1,0,NULL),(894,771,5,1,1,NULL),(895,772,5,0,0,'WIRIS doesn\'t understand a negative index'),(896,773,5,1,1,NULL),(897,774,5,0,0,NULL),(898,775,5,1,1,NULL),(899,823,5,1,1,NULL),(900,824,5,1,1,NULL),(901,825,5,1,1,NULL),(902,826,5,1,1,NULL),(903,827,5,1,1,NULL),(904,828,5,1,1,NULL),(905,829,5,1,1,NULL),(906,830,5,1,1,NULL),(907,831,5,1,0,NULL),(908,832,5,1,1,NULL),(909,833,5,1,1,NULL),(910,834,5,1,0,'WIRIS doesn\'t generate procedures, but functions'),(911,835,5,1,0,'WIRIS doesn\'t generate procedures, but functions'),(912,836,5,1,0,'WIRIS doesn\'t generate procedures, but functions'),(913,837,5,1,1,NULL),(914,838,5,1,1,NULL),(915,106,5,1,1,NULL),(916,107,5,1,1,NULL),(917,108,5,0,0,NULL),(918,109,5,1,1,NULL),(919,110,5,1,0,'WIRIS generates a composition between map and suchthat, instead of a map_with_condition'),(920,111,5,1,1,NULL),(921,112,5,1,1,NULL),(922,113,5,1,1,NULL),(923,106,3,1,0,NULL),(924,107,3,1,0,NULL),(925,109,3,1,0,NULL),(926,113,3,1,0,NULL),(927,109,4,1,0,NULL),(928,111,4,1,0,NULL),(929,340,5,1,1,NULL); /*!40000 ALTER TABLE `om_def_cas` ENABLE KEYS */; UNLOCK TABLES; -- -- Table structure for table `om_defs` -- DROP TABLE IF EXISTS `om_defs`; CREATE TABLE `om_defs` ( `def_id` bigint(20) unsigned NOT NULL auto_increment, `cd_id` bigint(20) default NULL, `def_name` varchar(128) default NULL, PRIMARY KEY (`def_id`), UNIQUE KEY `def_id` (`def_id`), KEY `cd_id_ind` (`cd_id`) ) ENGINE=MyISAM AUTO_INCREMENT=990 DEFAULT CHARSET=latin1; -- -- Dumping data for table `om_defs` -- LOCK TABLES `om_defs` WRITE; /*!40000 ALTER TABLE `om_defs` DISABLE KEYS */; INSERT INTO `om_defs` VALUES (13,3,'line'),(12,3,'incident'),(11,3,'configuration'),(18,4,'acceleration'),(9,3,'are_on_line'),(14,3,'point'),(15,3,'type'),(17,3,'assertion'),(19,4,'area'),(20,4,'charge'),(21,4,'concentration'),(22,4,'current'),(23,4,'density'),(24,4,'displacement'),(25,4,'energy'),(26,4,'force'),(27,4,'length'),(28,4,'mass'),(29,4,'momentum'),(30,4,'pressure'),(31,4,'resistance'),(32,4,'speed'),(33,4,'temperature'),(34,4,'time'),(35,4,'velocity'),(36,4,'voltage'),(37,4,'volume'),(38,5,'affine_coordinates'),(39,5,'coordinates'),(40,5,'is_affine'),(41,5,'set_affine_coordinates'),(42,5,'set_coordinates'),(43,6,'Coulomb'),(44,6,'Joule'),(45,6,'Newton'),(46,6,'Newton_per_sqr_metre'),(47,6,'Pascal'),(48,6,'Watt'),(49,6,'amp'),(50,6,'degree_Celsius'),(51,6,'degree_Kelvin'),(52,6,'gramme'),(53,6,'litre'),(54,6,'litre_pre1964'),(55,6,'metre'),(56,6,'metre_sqrd'),(57,6,'metres_per_second'),(58,6,'metres_per_second_sqrd'),(59,6,'second'),(60,6,'volt'),(61,7,'field_by_poly'),(62,7,'fraction_field'),(63,7,'free_field'),(64,8,'arccos'),(65,8,'arccosh'),(66,8,'arccot'),(67,8,'arccoth'),(68,8,'arccsc'),(69,8,'arccsch'),(70,8,'arcsec'),(71,8,'arcsech'),(72,8,'arcsin'),(73,8,'arcsinh'),(74,8,'arctan'),(75,8,'arctanh'),(76,8,'cos'),(77,8,'cosh'),(78,8,'cot'),(79,8,'coth'),(80,8,'csc'),(81,8,'csch'),(82,8,'exp'),(83,8,'ln'),(84,8,'log'),(85,8,'sec'),(86,8,'sech'),(87,8,'sin'),(88,8,'sinh'),(89,8,'tan'),(90,8,'tanh'),(91,9,'abs'),(92,9,'divide'),(93,9,'gcd'),(94,9,'lcm'),(95,9,'minus'),(96,9,'plus'),(97,9,'power'),(98,9,'product'),(99,9,'root'),(100,9,'sum'),(101,9,'times'),(102,9,'unary_minus'),(103,10,'automorphism_group'),(104,10,'direct_product'),(105,10,'free_magma'),(106,11,'big_intersect'),(107,11,'big_union'),(108,11,'cartesian_power'),(109,11,'k_subsets'),(110,11,'map_with_condition'),(111,11,'map_with_target'),(112,11,'map_with_target_and_condition'),(113,11,'powerset'),(114,12,'prefix'),(115,13,'class'),(116,13,'divides'),(117,13,'eqmod'),(118,13,'euler'),(119,13,'modulo_relation'),(120,13,'neqmod'),(121,13,'ord'),(122,14,'approx'),(123,14,'eq'),(124,14,'geq'),(125,14,'gt'),(126,14,'leq'),(127,14,'lt'),(128,14,'neq'),(129,15,'lift_binary'),(130,16,'class'),(131,16,'classes'),(132,16,'equivalence_closure'),(133,16,'is_equivalence'),(134,16,'is_reflexive'),(135,16,'is_relation'),(136,16,'is_symmetric'),(137,16,'is_transitive'),(138,16,'reflexive_closure'),(139,16,'symmetric_closure'),(140,16,'transitive_closure'),(141,17,'Hermitian'),(142,17,'anti-Hermitian'),(143,17,'banded'),(144,17,'constant'),(145,17,'diagonal_matrix'),(146,17,'identity'),(147,17,'lower-Hessenberg'),(148,17,'lower-triangular'),(149,17,'scalar'),(150,17,'skew-symmetric'),(151,17,'symmetric'),(152,17,'tridiagonal'),(153,17,'upper-Hessenberg'),(154,17,'upper-triangular'),(155,17,'zero'),(156,18,'poly_u_rep'),(157,18,'polynomial_ring_u'),(158,18,'polynomial_u'),(159,18,'term'),(160,19,'Pair'),(161,19,'PairProj1'),(162,19,'PairProj2'),(163,19,'SigmaType'),(164,19,'Tuple'),(165,19,'type'),(166,19,'typecoerce'),(167,20,'unit_prefix'),(168,21,'mean'),(169,21,'moment'),(170,21,'sdev'),(171,21,'variance'),(172,22,'IndType'),(173,22,'type'),(174,22,'typecoerce'),(175,23,'matrix'),(176,23,'matrixcolumn'),(177,23,'vector'),(178,24,'cyclic_group'),(179,24,'dihedral_group'),(180,24,'generalized_quaternion_group'),(181,24,'quaternion_group'),(182,25,'Laplacian'),(183,25,'curl'),(184,25,'divergence'),(185,25,'grad'),(186,26,'const_node'),(187,26,'depth'),(188,26,'inp_node'),(189,26,'left_ref'),(190,26,'length'),(191,26,'monte_carlo_eq'),(192,26,'node_selector'),(193,26,'op_node'),(194,26,'poly_ring_SLP'),(195,26,'polynomial_SLP'),(196,26,'prog_body'),(197,26,'quotient'),(198,26,'return_node'),(199,26,'right_ref'),(200,26,'slp_degree'),(201,27,'completely_reduced'),(202,27,'groebner'),(203,27,'groebner_basis'),(204,27,'groebnered'),(205,27,'reduce'),(206,28,'CDComment'),(207,28,'CDGroup'),(208,28,'CDGroupDescription'),(209,28,'CDGroupMember'),(210,28,'CDGroupName'),(211,28,'CDGroupURL'),(212,28,'CDGroupVersion'),(213,28,'CDName'),(214,28,'CDURL'),(215,28,'CDVersion'),(216,29,'Z'),(217,29,'Zm'),(218,29,'quaternions'),(219,30,'carrier'),(220,30,'expression'),(221,30,'factor_of'),(222,30,'is_commutative'),(223,30,'is_subsemigroup'),(224,30,'magma'),(225,30,'multiplication'),(226,30,'semigroup'),(227,30,'subsemigroup'),(228,31,'base'),(229,31,'generators'),(230,31,'group'),(231,31,'is_in'),(232,31,'is_primitive'),(233,31,'is_subgroup'),(234,31,'is_transitive'),(235,31,'orbit'),(236,31,'orbits'),(237,31,'order'),(238,31,'schreier_tree'),(239,31,'stabilizer'),(240,31,'stabilizer_chain'),(241,31,'support'),(242,32,'homomorphism_by_generators'),(243,32,'left_quotient_map'),(244,32,'right_quotient_map'),(245,33,'DMP'),(246,33,'DMPL'),(247,33,'SDMP'),(248,33,'ambient_ring'),(249,33,'anonymous'),(250,33,'minus'),(251,33,'plus'),(252,33,'poly_ring_d'),(253,33,'poly_ring_d_named'),(254,33,'power'),(255,33,'rank'),(256,33,'term'),(257,33,'times'),(258,33,'variables'),(259,34,'automorphism_group'),(260,34,'is_automorphism'),(261,34,'is_endomorphism'),(262,34,'is_homomorphism'),(263,34,'is_isomorphism'),(264,34,'isomorphic'),(265,35,'decide'),(266,35,'disprove'),(267,35,'evaluate'),(268,35,'evaluate_to_type'),(269,35,'explore'),(270,35,'find'),(271,35,'look_up'),(272,35,'prove'),(273,35,'prove_in_theory'),(274,35,'response'),(275,36,'otherwise'),(276,36,'piece'),(277,36,'piecewise'),(278,37,'acre_us_survey'),(279,37,'foot_us_survey'),(280,37,'mile_us_survey'),(281,37,'pint_us_dry'),(282,37,'pint_us_liquid'),(283,37,'yard_us_survey'),(284,38,'polynomial_ring'),(285,39,'automorphism_group'),(286,39,'cyclic_semigroup'),(287,39,'direct_power'),(288,39,'direct_product'),(289,39,'free_semigroup'),(290,39,'left_regular_representation'),(291,39,'maps_semigroup'),(292,40,'class'),(293,40,'divides'),(294,40,'eqmod'),(295,40,'modulo_relation'),(296,40,'neqmod'),(297,41,'is_automorphism'),(298,41,'is_endomorphism'),(299,41,'is_homomorphism'),(300,41,'is_isomorphism'),(301,41,'isomorphic'),(302,41,'left_multiplication'),(303,41,'right_multiplication'),(304,42,'carrier'),(305,42,'divisor_of'),(306,42,'expression'),(307,42,'identity'),(308,42,'invertibles'),(309,42,'is_commutative'),(310,42,'is_invertible'),(311,42,'is_submonoid'),(312,42,'monoid'),(313,42,'multiplication'),(314,42,'semigroup'),(315,42,'submonoid'),(316,43,'bytearray'),(317,43,'float'),(318,43,'integer'),(319,43,'omtype'),(320,43,'string'),(321,43,'symtype'),(322,44,'extended_in'),(323,44,'in'),(324,44,'in_radical'),(325,44,'minimal_groebner_element'),(326,45,'arrowset'),(327,45,'digraph'),(328,45,'edgeset'),(329,45,'graph'),(330,45,'source'),(331,45,'target'),(332,45,'vertexset'),(333,46,'append'),(334,46,'cons'),(335,46,'first'),(336,46,'in'),(337,46,'list_selector'),(338,46,'nil'),(339,46,'rest'),(340,46,'reverse'),(341,46,'size'),(342,47,'corner'),(343,47,'endpoint'),(344,47,'endpoints'),(345,47,'halfline'),(346,47,'segment'),(347,48,'Avogadros_constant'),(348,48,'Boltzmann_constant'),(349,48,'Faradays_constant'),(350,48,'Loschmidt_constant'),(351,48,'Planck_constant'),(352,48,'absolute_zero'),(353,48,'gas_constant'),(354,48,'gravitational_constant'),(355,48,'light_year'),(356,48,'magnetic_constant'),(357,48,'mole'),(358,48,'speed_of_light'),(359,48,'zero_Celsius'),(360,48,'zero_Fahrenheit'),(361,49,'A'),(362,49,'Boolean'),(363,49,'GFp'),(364,49,'GFpn'),(365,49,'H'),(366,49,'QuotientField'),(367,49,'Zm'),(368,50,'algorithm'),(369,50,'asynchronousError'),(370,50,'encodingError'),(371,50,'limitation'),(372,50,'unexpected'),(373,51,'list'),(374,51,'map'),(375,51,'suchthat'),(376,52,'carrier'),(377,52,'expression'),(378,52,'group'),(379,52,'identity'),(380,52,'inversion'),(381,52,'is_commutative'),(382,52,'is_normal'),(383,52,'is_subgroup'),(384,52,'monoid'),(385,52,'multiplication'),(386,52,'normal_closure'),(387,52,'power'),(388,52,'subgroup'),(389,53,'acre'),(390,53,'bar'),(391,53,'degree_Fahrenheit'),(392,53,'foot'),(393,53,'mile'),(394,53,'miles_per_hr'),(395,53,'miles_per_hr_sqrd'),(396,53,'pint'),(397,53,'pound_force'),(398,53,'pound_mass'),(399,53,'yard'),(400,54,'list_to_matrix'),(401,54,'list_to_vector'),(402,55,'Semigroup'),(403,55,'associative'),(404,55,'make_Semigroup'),(405,56,'is_automorphism'),(406,56,'is_endomorphism'),(407,56,'is_homomorphism'),(408,56,'is_isomorphism'),(409,56,'isomorphic'),(410,56,'left_multiplication'),(411,56,'right_multiplication'),(412,57,'domain'),(413,57,'domainofapplication'),(414,57,'identity'),(415,57,'image'),(416,57,'inverse'),(417,57,'lambda'),(418,57,'left_compose'),(419,57,'left_inverse'),(420,57,'range'),(421,57,'right_inverse'),(422,58,'matrix'),(423,58,'matrixrow'),(424,58,'vector'),(425,59,'Setoid'),(426,59,'make_Setoid'),(427,60,'DMP'),(428,60,'DMPL'),(429,60,'SDMP'),(430,60,'anonymous'),(431,60,'completely_reduced'),(432,60,'elimination'),(433,60,'graded_lexicographic'),(434,60,'graded_reverse_lexicographic'),(435,60,'groebner'),(436,60,'groebnered'),(437,60,'lexicographic'),(438,60,'matrix_ordering'),(439,60,'ordering'),(440,60,'plus'),(441,60,'poly_ring_d'),(442,60,'poly_ring_d_named'),(443,60,'power'),(444,60,'reduce'),(445,60,'reverse_lexicographic'),(446,60,'term'),(447,60,'times'),(448,60,'weighted'),(449,60,'weighted_degree'),(450,61,'characteristic_eqn'),(451,61,'columncount'),(452,61,'eigenvalue'),(453,61,'eigenvector'),(454,61,'rank'),(455,61,'rowcount'),(456,61,'size'),(457,62,'argument'),(458,62,'complex_cartesian'),(459,62,'complex_polar'),(460,62,'conjugate'),(461,62,'imaginary'),(462,62,'real'),(463,63,'unexpected_symbol'),(464,63,'unhandled_symbol'),(465,63,'unsupported_CD'),(466,64,'int2flt'),(467,65,'NumericalValue'),(468,65,'Object'),(469,65,'SetNumericalValue'),(470,65,'attribution'),(471,65,'binder'),(472,65,'error'),(473,65,'mapsto'),(474,65,'nary'),(475,65,'nassoc'),(476,65,'structure'),(477,65,'type'),(478,66,'CDSComment'),(479,66,'CDSReviewDate'),(480,66,'CDSStatus'),(481,66,'CDSignatures'),(482,66,'Signature'),(483,67,'divide'),(484,67,'minus'),(485,67,'plus'),(486,67,'return'),(487,67,'times'),(488,68,'action'),(489,68,'are_distinct'),(490,68,'cycle'),(491,68,'cycle_type'),(492,68,'cycles'),(493,68,'domain'),(494,68,'endomap'),(495,68,'endomap_left_compose'),(496,68,'endomap_right_compose'),(497,68,'fix'),(498,68,'inverse'),(499,68,'is_bijective'),(500,68,'is_endomap'),(501,68,'is_list_perm'),(502,68,'is_permutation'),(503,68,'left_compose'),(504,68,'length'),(505,68,'list_perm'),(506,68,'listendomap'),(507,68,'order'),(508,68,'permutation'),(509,68,'permutationsn'),(510,68,'right_compose'),(511,68,'sign'),(512,68,'support'),(513,69,'alternating_group'),(514,69,'cyclic_group'),(515,69,'dihedral_group'),(516,69,'quaternion_group'),(517,69,'symmetric_group'),(518,69,'vierer_group'),(519,70,'eqs'),(520,71,'complex_cartesian_type'),(521,71,'complex_polar_type'),(522,71,'constant_type'),(523,71,'fn_type'),(524,71,'integer_type'),(525,71,'list_type'),(526,71,'matrix_type'),(527,71,'rational_type'),(528,71,'real_type'),(529,71,'set_type'),(530,71,'type'),(531,71,'vector_type'),(532,72,'elimination'),(533,72,'graded_lexicographic'),(534,72,'graded_reverse_lexicographic'),(535,72,'lexicographic'),(536,72,'matrix_ordering'),(537,72,'ordering'),(538,72,'reverse_lexicographic'),(539,72,'weighted'),(540,72,'weighted_degree'),(541,73,'LaTeX_encoding'),(542,73,'MathML_encoding'),(543,74,'inverse'),(544,74,'times'),(545,75,'CD'),(546,75,'CDBase'),(547,75,'CDComment'),(548,75,'CDDate'),(549,75,'CDDefinition'),(550,75,'CDName'),(551,75,'CDReviewDate'),(552,75,'CDRevision'),(553,75,'CDStatus'),(554,75,'CDURL'),(555,75,'CDUses'),(556,75,'CDVersion'),(557,75,'CMP'),(558,75,'Description'),(559,75,'Example'),(560,75,'FMP'),(561,75,'Name'),(562,75,'Role'),(563,76,'type'),(564,76,'typecoerce'),(565,77,'mean'),(566,77,'median'),(567,77,'mode'),(568,77,'moment'),(569,77,'sdev'),(570,77,'variance'),(571,78,'coordinatize'),(572,78,'ideal'),(573,78,'is_coordinatized'),(574,78,'polynomial_assertion'),(575,79,'indNat'),(576,79,'plus'),(577,79,'succ'),(578,79,'times'),(579,79,'zero'),(580,80,'factors'),(581,80,'gcd'),(582,80,'quotient'),(583,80,'remainder'),(584,81,'NaN'),(585,81,'based_integer'),(586,81,'e'),(587,81,'gamma'),(588,81,'i'),(589,81,'infinity'),(590,81,'pi'),(591,81,'rational'),(592,82,'is_automorphism'),(593,82,'is_endomorphism'),(594,82,'is_homomorphism'),(595,82,'is_isomorphism'),(596,82,'isomorphic'),(597,82,'left_multiplication'),(598,82,'right_multiplication'),(599,83,'bigfloat'),(600,83,'bigfloatprec'),(601,84,'Prop'),(602,84,'Type'),(603,84,'Type0'),(604,85,'is_automorphism'),(605,85,'is_endomorphism'),(606,85,'is_homomorphism'),(607,85,'is_isomorphism'),(608,85,'isomorphic'),(609,86,'exists'),(610,86,'forall'),(611,87,'automorphism_group'),(612,87,'homomorphism_by_generators'),(613,88,'one'),(614,88,'zero'),(615,89,'integer_interval'),(616,89,'interval'),(617,89,'interval_cc'),(618,89,'interval_co'),(619,89,'interval_oc'),(620,89,'interval_oo'),(621,90,'addition'),(622,90,'additive_group'),(623,90,'carrier'),(624,90,'expression'),(625,90,'field'),(626,90,'identity'),(627,90,'inverse'),(628,90,'is_commutative'),(629,90,'is_subfield'),(630,90,'minus'),(631,90,'multiplication'),(632,90,'multiplicative_group'),(633,90,'power'),(634,90,'subfield'),(635,90,'subtraction'),(636,90,'zero'),(637,91,'arccos'),(638,91,'arccosh'),(639,91,'arccot'),(640,91,'arccoth'),(641,91,'arccsc'),(642,91,'arccsch'),(643,91,'arcsec'),(644,91,'arcsech'),(645,91,'arcsin'),(646,91,'arcsinh'),(647,91,'arctan'),(648,91,'arctanh'),(649,91,'ln'),(650,91,'log'),(651,92,'Bell'),(652,92,'Fibonacci'),(653,92,'Stirling1'),(654,92,'Stirling2'),(655,92,'binomial'),(656,92,'multinomial'),(657,93,'are_conjugate'),(658,93,'conjugacy_class'),(659,93,'conjugacy_class_representatives'),(660,93,'conjugacy_classes'),(661,93,'left_coset'),(662,93,'left_coset_representative'),(663,93,'left_cosets'),(664,93,'left_transversal'),(665,93,'right_coset'),(666,93,'right_coset_representative'),(667,93,'right_cosets'),(668,93,'right_transversal'),(669,94,'determinant'),(670,94,'matrix_selector'),(671,94,'outerproduct'),(672,94,'scalarproduct'),(673,94,'transpose'),(674,94,'vector_selector'),(675,94,'vectorproduct'),(676,95,'cartesian_product'),(677,95,'emptyset'),(678,95,'in'),(679,95,'intersect'),(680,95,'multiset'),(681,95,'notin'),(682,95,'notprsubset'),(683,95,'notsubset'),(684,95,'prsubset'),(685,95,'setdiff'),(686,95,'size'),(687,95,'subset'),(688,95,'union'),(689,96,'direct_power'),(690,96,'direct_product'),(691,96,'free_ring'),(692,96,'ideal'),(693,96,'integers'),(694,96,'invertibles'),(695,96,'is_ideal'),(696,96,'kernel'),(697,96,'m_poly_ring'),(698,96,'matrix_ring'),(699,96,'multiplicative_group'),(700,96,'poly_ring'),(701,96,'principal_ideal'),(702,96,'quotient_ring'),(703,97,'ceiling'),(704,97,'floor'),(705,97,'round'),(706,97,'trunc'),(707,98,'GL'),(708,98,'GLn'),(709,98,'SL'),(710,98,'SLn'),(711,98,'alternating_group'),(712,98,'alternatingn'),(713,98,'automorphism_group'),(714,98,'center'),(715,98,'centralizer'),(716,98,'derived_subgroup'),(717,98,'direct_power'),(718,98,'direct_product'),(719,98,'free_group'),(720,98,'invertibles'),(721,98,'normalizer'),(722,98,'quotient_group'),(723,98,'sylow_subgroup'),(724,98,'symmetric_group'),(725,98,'symmetric_groupn'),(726,99,'function'),(727,99,'specification'),(728,100,'automorphism_group'),(729,100,'homomorphism_by_generators'),(730,100,'quotient_by_poly_map'),(731,100,'quotient_map'),(732,101,'addition'),(733,101,'additive_group'),(734,101,'carrier'),(735,101,'expression'),(736,101,'identity'),(737,101,'is_commutative'),(738,101,'is_subring'),(739,101,'multiplication'),(740,101,'multiplicative_monoid'),(741,101,'negation'),(742,101,'power'),(743,101,'ring'),(744,101,'subring'),(745,101,'subtraction'),(746,101,'zero'),(747,102,'poly_r_rep'),(748,102,'polynomial_r'),(749,102,'polynomial_ring_r'),(750,102,'term'),(751,103,'and'),(752,103,'equivalent'),(753,103,'false'),(754,103,'implies'),(755,103,'not'),(756,103,'or'),(757,103,'true'),(758,103,'xor'),(759,104,'Pair'),(760,104,'PairProj1'),(761,104,'PairProj2'),(762,104,'SigmaType'),(763,105,'collect'),(764,105,'list_to_poly_d'),(765,105,'poly_d_named_to_arith'),(766,105,'poly_d_to_arith'),(767,106,'expand'),(768,106,'factor'),(769,106,'factors'),(770,106,'gcd'),(771,107,'difference'),(772,107,'entry'),(773,107,'length'),(774,107,'list_of_lengthn'),(775,107,'select'),(776,108,'extended_gcd'),(777,109,'altitude'),(778,109,'angle'),(779,109,'arc'),(780,109,'are_on_circle'),(781,109,'center'),(782,109,'center_of'),(783,109,'center_of_gravity'),(784,109,'circle'),(785,109,'distance'),(786,109,'is_midpoint'),(787,109,'midpoint'),(788,109,'parallel'),(789,109,'perpbisector'),(790,109,'perpendicular'),(791,109,'perpline'),(792,109,'polarline'),(793,109,'radius'),(794,109,'radius_of'),(795,109,'tangent'),(796,110,'cartesian_product'),(797,110,'emptyset'),(798,110,'in'),(799,110,'intersect'),(800,110,'map'),(801,110,'notin'),(802,110,'notprsubset'),(803,110,'notsubset'),(804,110,'prsubset'),(805,110,'set'),(806,110,'setdiff'),(807,110,'size'),(808,110,'subset'),(809,110,'suchthat'),(810,110,'union'),(811,111,'carrier'),(812,111,'is_associative'),(813,111,'is_commutative'),(814,111,'is_identity'),(815,111,'is_submagma'),(816,111,'left_divides'),(817,111,'left_expression'),(818,111,'magma'),(819,111,'multiplication'),(820,111,'right_divides'),(821,111,'right_expression'),(822,111,'submagma'),(823,112,'assignment'),(824,112,'block'),(825,112,'call_arguments'),(826,112,'def_arguments'),(827,112,'for'),(828,112,'function_block'),(829,112,'function_call'),(830,112,'function_definition'),(831,112,'global_var'),(832,112,'if'),(833,112,'local_var'),(834,112,'procedure_block'),(835,112,'procedure_call'),(836,112,'procedure_definition'),(837,112,'return'),(838,112,'while'),(839,113,'are_on_conic'),(840,113,'conic'),(841,114,'automorphism_group'),(842,114,'field_by_poly_map'),(843,114,'field_by_poly_vector'),(844,114,'homomorphism_by_generators'),(845,115,'apply_to_list'),(846,115,'kernel'),(847,115,'right_compose'),(848,116,'above'),(849,116,'below'),(850,116,'both_sides'),(851,116,'limit'),(852,116,'null'),(853,117,'factorial'),(854,117,'factorof'),(855,117,'quotient'),(856,117,'remainder'),(857,118,'coefficient'),(858,118,'coefficient_ring'),(859,118,'convert'),(860,118,'degree'),(861,118,'degree_wrt'),(862,118,'discriminant'),(863,118,'evaluate'),(864,118,'expand'),(865,118,'factor'),(866,118,'factored'),(867,118,'gcd'),(868,118,'lcm'),(869,118,'leading_coefficient'),(870,118,'partially_factored'),(871,118,'power'),(872,118,'resultant'),(873,118,'squarefree'),(874,118,'squarefreed'),(875,119,'automorphism_group'),(876,119,'concatenation'),(877,119,'cyclic_monoid'),(878,119,'direct_power'),(879,119,'direct_product'),(880,119,'emptyword'),(881,119,'free_monoid'),(882,119,'left_regular_representation'),(883,119,'maps_monoid'),(884,119,'strings'),(885,120,'arctan'),(886,120,'unwind'),(887,121,'max'),(888,121,'min'),(889,122,'conjugation'),(890,122,'is_automorphism'),(891,122,'is_endomorphism'),(892,122,'is_homomorphism'),(893,122,'is_isomorphism'),(894,122,'isomorphic'),(895,122,'left_multiplication'),(896,122,'right_inverse_multiplication'),(897,122,'right_multiplication'),(898,123,'coefficient'),(899,123,'coefficient_ring'),(900,123,'degree'),(901,123,'expand'),(902,123,'leading_coefficient'),(903,123,'leading_monomial'),(904,123,'leading_term'),(905,124,'atto'),(906,124,'centi'),(907,124,'deci'),(908,124,'deka'),(909,124,'exa'),(910,124,'femto'),(911,124,'giga'),(912,124,'hecto'),(913,124,'kilo'),(914,124,'mega'),(915,124,'micro'),(916,124,'milli'),(917,124,'nano'),(918,124,'peta'),(919,124,'pico'),(920,124,'tera'),(921,124,'yocto'),(922,124,'yotta'),(923,124,'zepto'),(924,124,'zetta'),(925,125,'conway_polynomial'),(926,125,'discrete_log'),(927,125,'field_by_conway'),(928,125,'field_by_conway'),(929,125,'is_primitive'),(930,125,'is_primitive_poly'),(931,125,'minimal_polynomial'),(932,125,'primitive_element'),(933,126,'is_domain'),(934,126,'is_field'),(935,126,'is_maximal_ideal'),(936,126,'is_prime_ideal'),(937,126,'is_zero_divisor'),(938,127,'matrix_tensor'),(939,127,'vector_tensor'),(940,128,'antisymmetric'),(941,128,'equivalence'),(942,128,'irreflexive'),(943,128,'order'),(944,128,'partial_equivalence'),(945,128,'pre_order'),(946,128,'reflexive'),(947,128,'relation'),(948,128,'strict_order'),(949,128,'symmetric'),(950,128,'transitive'),(951,129,'calendar_month'),(952,129,'calendar_year'),(953,129,'day'),(954,129,'hour'),(955,129,'minute'),(956,129,'second'),(957,129,'week'),(958,130,'C'),(959,130,'N'),(960,130,'P'),(961,130,'Q'),(962,130,'R'),(963,130,'Z'),(964,131,'conjugation'),(965,131,'is_automorphism'),(966,131,'is_endomorphism'),(967,131,'is_homomorphism'),(968,131,'is_isomorphism'),(969,131,'isomorphic'),(970,131,'left_multiplication'),(971,131,'right_multiplication'),(972,132,'defint'),(973,132,'diff'),(974,132,'int'),(975,132,'nthdiff'),(976,132,'partialdiff'),(977,133,'permutation'),(978,134,'Lambda'),(979,134,'PiType'),(980,134,'mapsto'),(981,134,'type'),(982,134,'typecoerce'),(983,135,'C'),(984,135,'Q'),(985,135,'R'),(986,136,'is_primitive'),(987,136,'is_transitive'),(988,136,'orbit'),(989,136,'stabilizer'); /*!40000 ALTER TABLE `om_defs` ENABLE KEYS */; UNLOCK TABLES; -- -- Final view structure for view `om_cd_cas_with_count` -- /*!50001 DROP TABLE IF EXISTS `om_cd_cas_with_count`*/; /*!50001 DROP VIEW IF EXISTS `om_cd_cas_with_count`*/; /*!50001 CREATE ALGORITHM=UNDEFINED */ /*!50013 DEFINER=`SCIEnce`@`localhost` SQL SECURITY DEFINER */ /*!50001 VIEW `om_cd_cas_with_count` AS select `cc`.`cd_id` AS `cd_id`,`cc`.`cas_id` AS `cas_id`,count(`d`.`def_id`) AS `cnt_tot`,sum(`dc`.`support_enc`) AS `cnt_sup_enc`,sum(`dc`.`support_dec`) AS `cnt_sup_dec` from ((`om_cd_cas` `cc` left join `om_defs` `d` on((`d`.`cd_id` = `cc`.`cd_id`))) left join `om_def_cas` `dc` on(((`dc`.`cas_id` = `cc`.`cas_id`) and (`dc`.`def_id` = `d`.`def_id`)))) group by `cc`.`cd_id`,`cc`.`cas_id` */; /*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */; /*!40101 SET SQL_MODE=@OLD_SQL_MODE */; /*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */; /*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */; /*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */; /*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */; /*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */; /*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */; -- Dump completed on 2007-05-03 7:59:04