$ you should use $\setminus$\texttt{lt} and $\setminus$\texttt{gt}, respectively. For mathematics in display mode, use {\tt $\setminus$[\dots $\setminus$]} \bigskip Other \LaTeX-commands to be used outside the mathematics environment are \begin{tabular}{l|l} name& display\\ \hline $\setminus$section\{title\} & {\large\bf 1 Title}\\ $\setminus$subsection\{title\} & {\bf 1.1 Title}\\ $\setminus$dots & ...\\ $\{\setminus$it word $\}$& {\it word}\\ $\{\setminus$em word $\}$& {\em word}\\ $\{\setminus$bf word $\}$& {\bf word}\\ $\{\setminus$tt word $\}$& {\tt word}\\ $\{\setminus$sf word $\}$& {\sf word}\\ $\setminus$LaTeX & \LaTeX\\ $\setminus$bigskip &\\ $\setminus$medskip &\\ $\setminus$includegraphics\{galois\}&\includegraphics{galois}\\ \end{tabular} \bigskip This list can be extended. However, do {\bf NOT} use your own macros! \bigskip To make references to other files, you can use the {\tt $\setminus$href\{filename\}\{text\}} or {\tt $\setminus$href\{filename\#label\}\{text\}} command. For example, a reference to the \href{exam.pdf#ex1}{exam} example file, label ex1. \bigskip Internal references can be done using the {\tt$\setminus$ref\{labelname\}} command. \bigskip In het header of the file, you should also provide metadata. This metadata should be started with $\setminus$begin\{metadata\} and be closed with $\setminus$end\{metadata\}. The value of each metadata-filed can be set using the $\setminus$md comand. For example $\setminus$md\{author\}\{Peter Pan\} sets the value of the metadata-field `author' to Peter Pan. \bigskip The style is kept this simple, to make a translation to an {\sf XML}-format easy. This {\sf XML}-format is then used to display the material on the web. \bigskip In the following section you find an eample containing some mathematics. \section{Algebra} \begin{df}\label{field-def} Let $p$ be a prime and $f$ an irreducible polynomial in $\mathbb{Z}/p\mathbb{Z}[X]$. Then the quotient ring $\mathbb{Z}/p\mathbb{Z}[X]/(f)$ is a finite field. Such a field is called a \emph{Galois field}. \end{df} One of the main theorems in the theory of fields is the following. \begin{thm}[Classification of finite field] Every finite field $\mathbb{F}$ is isomorphic to a Galois field. \end{thm} \begin{exa} Suppose $\mathbb{F}$ is a field with $4$ elements, then $\mathbb{F}$ is isomorphic to \[ \mathbb{Z}/2\mathbb{Z}[X](X^2+X+1). \] \end{exa} \begin{figure} \includegraphics{galois} \caption{Galois} \end{figure} \begin{rmk} Galois was a famous mathematician working in algebra. The fields introduced in {Definition \ref{field-def}} are named after him, to honor him for his contributions to this area of Algebra. \end{rmk} \section{Test your pages} Once your theory pages run without errors in \LaTeX\, you can test whether they translate properly to valid {\sf XML}. For this you should upload your file into the {\em translation service} available at \href{http://www.mathdox.org}{{\tt http://www.mathdox.org}}. For questions, please contact Jan Willem Knopper \href{mailto:jwk@mathdox.org}{{\tt jwk@mathdox.org}} or Hans Cuypers \href{mailto:hansc@win.tue.nl}{{\tt hansc@win.tue.nl}}. \end{document} ]]> LaTeX Sandbox: Theory
Introduction On this page it is possible to enter restricted MathDox as generated from LaTeX source, to check if it is in the correct format and to preview it. This is demonstrated by a linear algebra example.
Trying MathDox theory generated from XML Preview file Preview form