modulo_integers
http://www.openmath.org/cd/modint.ocd
0
experimental
logic1
quant1
set1
arith1
setname1
relation1
fns1
alg1
interval1
integer1
This CD holds a collection of basic modular arithmetic.
modulo_relation
If m is an integer, then mod(m) denotes the equivalence relation modulo m on
Z.
mod
If a,b, m are integer, then mod(a,b,m) denotes that
a=b mod m.
class
If a, m are integer, then class(a,m) denotes that
the residue class a mod m.
classring
If m is an integer, then classring(m) denotes the
the residue class ring Z/mZ.
multgroup
If m is an integer, then multgroup(m) denotes the multiplicative
group of invertible elements in
the residue class ring Z/mZ.
euler
euler denotes the Euler totient function.
If m is an integer, then euler(m) denotes the order of the multiplicative
group of invertible elements in
the residue class ring Z/mZ.