modulo_integers http://www.openmath.org/cd/modint.ocd 0 experimental logic1 quant1 set1 arith1 setname1 relation1 fns1 alg1 interval1 integer1 This CD holds a collection of basic modular arithmetic. modulo_relation If m is an integer, then mod(m) denotes the equivalence relation modulo m on Z. mod If a,b, m are integer, then mod(a,b,m) denotes that a=b mod m. class If a, m are integer, then class(a,m) denotes that the residue class a mod m. classring If m is an integer, then classring(m) denotes the the residue class ring Z/mZ. multgroup If m is an integer, then multgroup(m) denotes the multiplicative group of invertible elements in the residue class ring Z/mZ. euler euler denotes the Euler totient function. If m is an integer, then euler(m) denotes the order of the multiplicative group of invertible elements in the residue class ring Z/mZ.