Supported CD's and Symbols
The following tables list what Content Dictionaries and Symbols
therein are supported by default by this phrasebook.
alg1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
one |
X |
- |
- |
- |
|
zero |
X |
- |
- |
- |
|
arith1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
abs |
- |
X |
- |
- |
|
divide |
- |
X |
- |
- |
|
gcd |
- |
X |
- |
- |
|
lcm |
- |
X |
- |
- |
|
minus |
- |
X |
- |
- |
|
plus |
- |
X |
- |
- |
Adding 2 matrices fails. |
power |
- |
X |
- |
- |
|
product |
- |
X |
- |
- |
|
root |
- |
X |
- |
- |
|
sum |
- |
X |
- |
- |
|
times |
- |
X |
- |
- |
Multiplying 2 matrices fails. |
unary_minus |
- |
X |
- |
- |
|
bigfloat1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
bigfloat |
- |
X |
- |
- |
|
bigfloatprec |
- |
X |
- |
- |
|
calculus1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
defint |
- |
X |
- |
- |
Supports 'direct' functions, not A(x) styled ones |
diff |
- |
X |
- |
- |
Supports 'direct' functions, not A(x) styled ones |
int |
- |
X |
- |
- |
Supports 'direct' functions, not A(x) styled ones |
nthdiff |
- |
X |
- |
- |
|
partialdiff |
- |
X |
- |
- |
|
complex1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
argument |
- |
X |
- |
- |
|
complex_cartesian |
- |
X |
- |
- |
|
complex_polar |
- |
X |
- |
- |
|
conjugate |
- |
X |
- |
- |
|
imaginary |
- |
X |
- |
- |
|
real |
- |
X |
- |
- |
|
fns1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
domain |
- |
X |
- |
- |
|
identity |
- |
X |
- |
- |
|
image |
- |
X |
- |
- |
|
inverse |
- |
X |
- |
- |
|
lambda |
- |
- |
X |
- |
|
left_compose |
- |
X |
- |
- |
|
range |
- |
X |
- |
- |
|
integer1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
factorial |
- |
X |
- |
- |
|
factorof |
- |
X |
- |
- |
|
quotient |
- |
X |
- |
- |
|
remainder |
- |
X |
- |
- |
|
interval1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
integer_interval |
- |
- |
- |
X |
|
interval_cc |
- |
- |
- |
X |
|
interval_co |
- |
- |
- |
X |
|
interval_oc |
- |
- |
- |
X |
|
interval_oo |
- |
- |
- |
X |
|
limit1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
above |
- |
- |
- |
X |
|
below |
- |
- |
- |
X |
|
both_sides |
- |
- |
- |
X |
|
limit |
- |
X |
- |
- |
|
null |
- |
- |
- |
X |
|
linalg1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
determinant |
- |
X |
- |
- |
|
matrix_selector |
- |
X |
- |
- |
|
outerproduct |
- |
X |
- |
- |
|
scalarproduct |
- |
X |
- |
- |
|
transpose |
- |
X |
- |
- |
|
vector_selector |
- |
X |
- |
- |
|
vectorproduct |
- |
X |
- |
- |
|
linalg2 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
matrix |
- |
X |
- |
- |
|
matrixrow |
- |
X |
- |
- |
|
list1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
list |
- |
X |
- |
- |
|
map |
- |
X |
- |
- |
|
suchthat |
- |
X |
- |
- |
|
logic1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
and |
- |
X |
- |
- |
|
equivalent |
- |
X |
- |
- |
|
false |
X |
- |
- |
- |
|
implies |
- |
X |
- |
- |
|
not |
- |
X |
- |
- |
|
or |
- |
X |
- |
- |
|
true |
X |
- |
- |
- |
|
xor |
- |
X |
- |
- |
|
minmax1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
max |
- |
X |
- |
- |
|
min |
- |
X |
- |
- |
|
multiset1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
* |
X |
X |
- |
- |
|
nums1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
based_integer |
- |
X |
- |
- |
|
e |
X |
- |
- |
- |
|
gamma |
X |
- |
- |
- |
|
i |
X |
- |
- |
- |
|
infinity |
X |
- |
- |
- |
|
NaN |
X |
- |
- |
- |
|
pi |
X |
- |
- |
- |
|
rational |
- |
X |
- |
- |
|
piece1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
* |
- |
X |
- |
- |
|
quant1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
exists |
- |
X |
- |
- |
|
forall |
- |
X |
- |
- |
|
relation1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
approx |
- |
X |
- |
- |
|
eq |
- |
X |
- |
- |
|
geq |
- |
X |
- |
- |
|
gt |
- |
X |
- |
- |
|
leq |
- |
X |
- |
- |
|
lt |
- |
X |
- |
- |
|
neq |
- |
X |
- |
- |
|
rounding1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
ceiling |
- |
X |
- |
- |
|
floor |
- |
X |
- |
- |
|
round |
- |
X |
- |
- |
|
trunc |
- |
X |
- |
- |
|
set1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
cartesian_product |
- |
X |
- |
- |
|
emptyset |
X |
- |
- |
- |
|
in |
- |
X |
- |
- |
|
map |
- |
X |
- |
- |
|
notin |
- |
X |
- |
- |
|
notprsubset |
- |
X |
- |
- |
|
notsubset |
- |
X |
- |
- |
|
prsubset |
- |
X |
- |
- |
|
set |
- |
X |
- |
- |
|
setdiff |
- |
X |
- |
- |
|
size |
- |
X |
- |
- |
|
subset |
- |
X |
- |
- |
|
sucbthat |
- |
X |
- |
- |
|
union |
- |
X |
- |
- |
|
setname1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
C |
X |
- |
- |
- |
|
N |
X |
- |
- |
- |
|
P |
X |
- |
- |
- |
|
Q |
X |
- |
- |
- |
|
R |
X |
- |
- |
- |
|
Z |
X |
- |
- |
- |
|
s_data1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
mean |
- |
X |
- |
- |
|
median |
- |
X |
- |
- |
|
mode |
- |
X |
- |
- |
|
moment |
- |
X |
- |
- |
|
sdev |
- |
X |
- |
- |
|
variance |
- |
X |
- |
- |
|
s_dist1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
mean |
- |
X |
- |
- |
|
moment |
- |
X |
- |
- |
|
sdev |
- |
X |
- |
- |
|
variance |
- |
X |
- |
- |
|
transc1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
arccos |
- |
X |
- |
- |
|
arccosh |
- |
X |
- |
- |
|
arccot |
- |
X |
- |
- |
|
arccoth |
- |
X |
- |
- |
|
arccsc |
- |
X |
- |
- |
|
arccsch |
- |
X |
- |
- |
|
arcsec |
- |
X |
- |
- |
|
arcsech |
- |
X |
- |
- |
|
arcsin |
- |
X |
- |
- |
|
arcsinh |
- |
X |
- |
- |
|
arctan |
- |
X |
- |
- |
|
arctanh |
- |
X |
- |
- |
|
cos |
- |
X |
- |
- |
|
cosh |
- |
X |
- |
- |
|
cot |
- |
X |
- |
- |
|
coth |
- |
X |
- |
- |
|
csc |
- |
X |
- |
- |
|
csch |
- |
X |
- |
- |
|
exp |
- |
X |
- |
- |
|
ln |
- |
X |
- |
- |
|
log |
- |
X |
- |
- |
|
sec |
- |
X |
- |
- |
|
sech |
- |
X |
- |
- |
|
sin |
- |
X |
- |
- |
|
sinh |
- |
X |
- |
- |
|
tan |
- |
X |
- |
- |
|
tanh |
- |
X |
- |
- |
|
veccalc1 CD
Name |
OMS |
OMA |
OMBIND |
Argument |
Notes |
curl |
- |
X |
- |
- |
|
divergence |
- |
X |
- |
- |
|
grad |
- |
X |
- |
- |
|
Laplacian |
- |
X |
- |
- |
|
Last modified: Fri Dec 06 11:49:50 W. Europe Standard Time 2002
Copyright (c) 2002, RIACA,
Technische Universiteit Eindhoven (TU/e)
All Rights Reserved.
|