
Linear syntax for communicating elementary mathematics

C J Sangwin∗ P Ramsden†

Abstract

We consider computer aided assessment (CAA) of mathematicsin which a student provides
an answer in the form of a mathematical expression. A common approach is for CAA system
implementors to adopt a linear syntax to allow students to communicate their answer to the ma-
chine. In this paper we consider the problems students encounter when mediating between (i)
traditional mathematical notation and (ii) the requirements of a strict computer algebra system
(CAS) syntax. We compare the linear syntaxes of five commonlyused general purpose CAS, and
report surprising variety even at the elementary levels.

1 Introduction

Mathematical notation is the product of a long tradition, and has evolved to take advantage of a rich set
of special symbols, together with their relative size and position on a two dimensional page. Certain
aspects reflect good notational design, and even arrangements that may be less happy in themselves
have been embedded, perhaps irreversibly, by usage.

Examples of the power of a well contrived notation to condense into small space, a mean-
ing which would in ordinary language require several lines or even pages, can hardly have
escaped the notice of most of my readers. [2, pg 330]

This quotation points to thecommunicativepower of a good notation, but in addition to this a well-
designed notation has the ability toaid calculation and thought. However, when typing a mathe-
matical expression using a keyboard one has only a one-dimensional string of symbols taken from a
limited alphabet. Translating mathematics into such a format is a fundamental problem. In this paper
we consider the difficulties of mediating between (i) traditional mathematical notation and (ii) the
requirements of a strict computer algebra system (CAS) syntax.

We were motivated to undertake this work while designing an input system for mathematical com-
puter aided assessment (CAA). In particular, we are interested in CAA in which a student provides
a mathematical expression and the system establishes properties automatically, rather than (say) se-
lecting from among a list of suggested answers, as in a multiple choice question. Using a mainstream
CAS to support this has become increasingly popular over thelast five years. Perhaps the first was
AiM, described by [13] which uses Maple. CalMath uses Mathematica, CABLE uses Axiom and the

∗Maths, Stats & OR Network, School of Mathematics, University of Birmingham, Birmingham, B15 2TT, Email:
C.J.Sangwin@bham.ac.uk

†Imperial College, London, SW7 2AZ Email:p.ramsden@imperial.ac.uk

1

STACK system (http://www.stack.bham.ac.uk) uses Maxima ([12]). From private corre-
spondence, the authors are also aware of Derive being used ina similar way. In these cases the CAA
system is layered on top of the CAS, and students must use the linear syntax of the CAS itself. It is
not necessary to use a CAS to process student responses for CAA and many systems have their own
input syntaxes. The Metric system of Ramsden and May (see [10]) is one example, and our discussion
is just as relevant to these systems. In this paper we

1. review the syntaxes of Maple, Maxima, Axiom, Derive and Mathematica and compare these
with mainstream mathematical usage;

2. examine students’ ability to use one of these when communicating with the CAA system AiM,
which uses Maple’s syntax;

3. argue for, and discuss the characteristics of, an “informal syntax” designed for the purpose of
mathematical CAA of school level algebra and calculus.

We draw a distinction between twocategories of user: the professional and the student; we make the
case that students, in particular, may experience problemsconnected with strict syntax. We also draw
a distinction, within the ‘student’ category, between twomodes of use: on one hand, problem-solving
and calculation and, on the other, assessment. It is in the context of assessment that, we argue, these
syntax issues become especially problematic. The following quotation is from a student’s detailed
comments, in course feedback, about the AiM system of [13], about which we shall say more below:

I feel the aim system is reasonably fair, however i have lost alot of marks in quiz 3 for
simple syntax errors.

Strictly, this student had not made asyntax error: his or her interpretation of this string was simply
different from that of AiM’s underlying CAS; this resulted in repeated incorrect attempts and pre-
sumably frustration. This is despite the fact that he or she had answered the problem correctly at
the level of mathematics: the ‘error’ was purely technical.Whatever the benefits or drawbacks of a
non-standard, especially precise syntax in problem-solving and calculation, such a syntax has clear
disadvantages if students taking tests are required to use it, precisely because of this risk of failing on
a technicality. This, we feel, is unacceptable.

2 Methodology

2.1 Background to existing CAS

For the purposes of this paper we focus entirely on expressions entered in the CAS’s ‘basic’ linear
syntax, as strings of keyboard characters. The first sectionof results contains a review of Derive 5,
Maple 9.03, Mathematica 5.0 and Maxima 5.10.0, and a versionof Axiom compiled from the source
code of November 24th 2004. All of these have been used in online CAA. The differences between the
various CAS have been discussed elsewhere, for example [6],or [14]. However, these comparisons are
from the point of view of the research mathematician. Furthermore, although both these works contain
chapters on mathematics education, neither addresses the problems students experience when using
the linear, typewritten syntax of the CAS concerned; instead, each concentrates on issues connected

2

with the use of the system’s graphical Front End. Front End issues, while important, are not our
concern here. Many CAS have well-developed user interfacesthat support 2D typesetting. Such
facilities are not available to an assessment system built using the CAS and so, for this reason, students
are expected instead to type their answers into a text area, raising the mediation issues that we treat
here. We examine the very basic linear syntax of each system,and pay particular attention to the
syntax for arithmetic, algebra and the entry of functions encountered in elementary mathematics, such
assin, log etc. We then consider briefly the syntax for entry of sets and lists.

In this paper we restrict comments toinput syntaxand refrain from commenting on evaluation and
simplifications. Establishing properties of expressions,eg equivalence is central to CAA, but lies
outside the scope of this paper: see [11].

2.2 Students’ errors with Maple’s linear syntax

To examine students’ use of a strict CAS syntax we consider the computer aided assessment system
AiM ([13]) built upon Maple. AiM is an internet-based systemthat can be used for both formative
and summative assessment, both of which are fully automated(indeed, it might more accurately be
described as a system for computer assessment rather than computer-aided assessment, although the
latter is the conventional term). Space precludes a detailed description of AiM here; see instead [13]
or [11]. In the AiM system, students’ answers are entered using Maple’s linear syntax, and these are
evaluated. AiM has been in regular use in a number of university mathematics departments in the
United Kingdom and internationally since 1999. We considerthe use of AiM by first year students at
one such institution. Each week during the first year of study, approximately200 students take a quiz
consisting of between10 and20 short answer practice questions, usually randomly generated within
carefully structured templates.

We are interested in the use of syntax for genuine tasks, not when learning the syntax itself. Hence,
records from the first week of the first year are excluded. Onlystudents’ attempts at actual mathe-
matical questions are considered. When answering such questions the students’ attention should be
focused on the mathematics and the task of using the CAS syntax is subsumed (in the sense of [8]).

AiM records every attempt of the student together with the actions requested and all outcomes, such as
feedback. For each syntactically invalid expression the system applies various heuristics for common
mistakes in an attempt to provide helpful feedback. These heuristics result in a “ValidationNote”,
which indicates what might be wrong with a particular response, and it is these which we use to help
identify and group syntax errors. Unfortunately, these canbe misleading as to the actual source of the
error. What the validation notes do achieve is a grouping of errors into similar kinds. Really the only
way to establish exactly what the student has done wrong is toexamine each answer, which we do in
subsequent sections in greater detail.

3 Results: existing CAS syntax

Many CAS terminate an expression with a punctuation character which also acts as a separator be-
tween adjacent expressions and controls whether the resultis to be displayed. These are shown in
Table 1. For Derive we have listed the terminating symbol= as execute and display. This performs
“basic simplification”, and other terminating symbols perform different simplifications.

3

CAS Display No display π e
√
−1 ∞

Axiom [NONE] ; %pi %e %i %plusInfinity
Derive = [NONE] pi #e #i inf
Maple ; : Pi exp(1) I infty
Mathematica [NONE] ; Pi E I Infinity
Maxima ; $ %pi %e %i Inf

Table 1: Entry of basic commands

In all the CAS the default number base is ten, with rational numbers being expressed as a division
using the symbol/ (for example2/3). The decimals separator is a full stop, which is uncontroversial
in the United Kingdom, Ireland and their former colonies. However, most of Europe uses a comma
to denote the decimal separator instead. There are also differences in printed notation between the
full stop, eg3.1415, and a center dot, eg3 · 1415, which cannot be captured using keyboard input.
The extent to which digits are grouped to ease the reading of longer numbers varies from country to
country, as do the symbols used to separate the groups. A fullstop, comma, space or apostrophe are
all used for this purpose. At variance with [5], none of the CAS parse numbers with digits grouped
and separated with a space, eg23 000 . Mathematica and Derive accept this as valid, with the
interpretation of implied multiplication. All CAS reservea comma to separate distinct data items, eg
in a set or list.

Another ambiguity occurs with juxtaposition of integers and fractions, such as in23
5 . Only Mathemat-

ica accepts this as valid, but interprets it as6
5 : an implied multiplication, rather than as an addition, ie

as 13
5 . Yet another arises in combinatorics and probability, where multiplication of integers is some-

times denoted using a center dot, so that
4 · 3
2 · 1 = 6,

rather than interpreting· as a decimal separator.

Differences in the ways very simple numbers are interpretedare illustrated in Table 2. In all sys-
tems except Derive and Mathematica, the string2.5e-2 is interpreted as scientific notation for the
floating point number0.025. Mathematica requires either2.5 * 10ˆ-2 , 2.5 10ˆ-2 or, unusually,
2.5 * ˆ-2 . Derive needs2.5 * 10ˆ-2 , which in the default settings is coerced into a rational1

40 . No
other system coerces floats into rational numbers by default, although this paper is not about simplifi-
cation or evaluation settings.

When a unary minus precedes a number one might expect the unary minus to bind more tightly than
any other prefix, postfix or binary operator, to signify that−4 is a single entity, the number minus four.
This interpretation would result in-4ˆ2 = (−4)2 = 16. However it does not, and all CAS interpret
-4ˆ2 = −(42) = −16. Inspection of many contemporary text books reveals that mainstream usage
adopts a similar approach to the unary minus as the CAS illustrated. However, there is inconsistency
among the various systems when a unary minus follows directly from a binary arithmetic operation,
as with the string4ˆ-2 . Here only Maple returns a syntax error. The rational number1

2 is entered as
1/2 . This is literally interpreted as the natural number1 divided by2, so that the division order of
precedence is used, rather than treating1

2 as a single mathematical entity: a rational number1.

1Again in evaluation, there are very subtle differences. Maple evaluates-9ˆ1/2 as−9

2
, whereas all other systems return

4

CAS 23 000 2.6e-2 4ˆ-2 -9ˆ1/2 x+-2 x * -2

Axiom ERROR 0.026 1
16 −9

2 x − 2 −2x
Derive 0 13e

5 − 2 1
16 −9

2 x − 2 −2x
Maple ERROR 0.026 ERROR −9

2 ERROR ERROR
Mathematica 0 −2 + 2.6e 1

16 −9
2 −2 + x −2x

Maxima ERROR 0.026 1
16 −9

2 x − 2 −2x

Table 2: Entry of numbers

CAS Assignment Equation Function definition Boolean infix

Axiom := = == =
Derive := = := =
Maple := = := =
Mathematica = (or :=) == := (or =) ==
Maxima : = := =

Table 3: Expressing different forms of equality

Entry of constantsπ, e,
√
−1 and∞ are shown in Table 1, with particular attention being paid to

capitalization. Here∞ is the positive real infinity, CAS usually differentiate between this, negative
real infinity and complex infinity. None of the systems usedj in place ofi to denote

√
−1. For

Mathematica, the table above gives the InputForm versions which are supported in the other input
formats.

In all the CAS, bothi ande are interpreted as arbitrary variables, not mathematical constants. Hence
in eˆx thee is simply an arbitrary and undefined variable. Systems do allow the constant defined in
Table 1 to be raised to a power using the exponential notationˆ . For example, in Maxima%eˆx is
legitimate. The extent to which simplification is necessaryto establish equivalence of these two forms
varies between the different CAS.

Note that in Maple,pi andPi are different, with the former simply being the variable denoted by the
Greek letter. However, both are displayed exactly as ‘π’. This is not the case with the Greek letter
gammawhich is interpreted by Maple, not as a variable, but as Euler’s constant,γ ≈ 0.5772.

Robert Recorde originally used his parallel lines= “to auoide the tedious repetition of these woordes:
is equalle to”. Their usage has evolved since 1557 to stand for four quite different operations which
are (i) assignment of a value to a variable; (ii) to denote an equation yet to be solved; (iii) definition
of a function; and finally (iv) as a Boolean infix operator, returning either TRUE or FALSE. The
choices made by various CAS are shown in Table 3. In Mathematica, though not in some other CAS
implementations such as Maple, senses (ii) and (iv) are essentially equivalent.

Note that Mathematica distinguishes betweenimmediate assignmentwhich happens when the variable
or function is defined, anddelayed assignmentwhich happens when the variable or function is called.
The symbol= is used for the former, and:= for the latter, so that the appropriate assignment for

−

9

2
. In the former the first operation is division, in the second it is unary minus.

5

variables is usually immediate and functions delayed. Thisis a powerful and useful distinction but
experience with students indicates that this is apt to confuse.

There are differences in the Boolean functions (verb forms) for logical NOT, AND, OR etc, and
correspondingnounforms used as connectives, which we do not detail here.

Inequalities use their keyboard symbols, with non-strict inequalities using<= or>=. All systems reject
minor variants of this syntax, including< = (ie with a space between), or=<. Only Mathematica
accepts chains of inequalities, such as1 < x < 2, interpreting this as a list of inequalities, all of
which must hold.

3.1 Arithmetic and basic algebraic expressions

All the CAS considered use a linear direct algebraic logic syntax, with infix binary operators for
arithmetic, rather than Polish Notation. This correspondsclosely to traditional written mathematics,
eg “two timesx” is expressed as2* x , rather than* 2 x . All used parentheses for grouping terms.

The arithmetic binary operations+, − and/ were identical in all systems. All but Derive and Mathe-
matica were strict in requiring an explicit multiplicationsign* . Derive allows implied multiplication
under some circumstances. That is to say it interprets2x as2* x . Mathematica’s InputForm exploits
the fact that parentheses are never used to enclose functionarguments, see Section 3.2, and there-
fore allows a multiplication sign to be omitted wherever this would not be ambiguous. For example
2x , x(x-1) and(x+1)(x-1) are all interpreted multiplicatively, butxy is interpreted as a single
variable with a two letter name. However, in Mathematica’s TraditionalForm, parentheses may be
used to enclose function arguments, creating fresh potential for ambiguities. In TraditionalForm2x
and (x+1)(x-1) are interpreted as multiplication, whereasx(x-1) is treated as a function. To
force multiplication, the user must inert either an asterisk or a space character. Note, however, that
TraditionalForm is not a linear syntax but a 2D formatted one, dependent on Mathematica’s Front End
functionality, and therefore not in general available to a custom CAA application.

Exponentiation was denoted using the symbolˆ in all systems, with Axiom also using** . Factorials
are obtained using a postfix operator, egn! in all systems except Axiom, which used the function
factorial(n) . Prefix notation is also available in some systems for the arithmetic operators. For
example,x + y could be entered in Mathematica asPlus[x, y] or in Maxima using"+"(x,y) .

3.2 Functions

The syntax for functions, egsin(x), shows significant systematic differences. Mathematica uses the
function name followed by the argument enclosed in brackets(for example f[x]), and parentheses are
reserved for grouping terms. Other CAS use parentheses instead (for example f(x)). Both Derive
and Axiom accept a space to signify function application. For example,sin x , is interpreted as
sin(x) with parentheses required only to group terms, egcos (n * pi) . Here the space is optional.
Using a space in this way reduces the number of symbols. Further, sin sin x is interpreted as a
composition,sin(sin(x)), which can be written naturally assin2 x. This approach led Babbage to his
“calculus of notations”, [1], with the natural consequencethat the inverse is now written assin−1. So
one could write

sin−1 sin x = sin(1−1) x = sin0 x = x.

6

(We do not comment here whether this is mathematically legitimate.) It is interesting to note the incon-
sistency with modern usage, in whichsin2(x) is generally used to denote(sin(x))2, while sin−1(x)
is, in the English-speaking tradition, taken as the inverse, rather than the reciprocal ofsin(x). Derive
was unique in acceptingsinˆ2(x) as(sin x)2, and was consistent in interpretingsinˆ-1(x) as

1
sin x

. However, this differs from current usage for the inverse. Mathematica acceptsSinˆ2 [x]
andSinˆ(-1) [x] , but does not interpret them. One quirk unique to Maple is theinterpretation
of 2(x+1) as the application of the constant function2 to the argument(x + 1), which results in the
value2. Hencesinˆ2(x) is the sine function raised to the power of2(x) , which is the constant
function 2 and argumentx. This is interpreted assin2, which is a function, rather than the result of
applying a function to an argument2. The expressionsin2 when applied tox, is interpreted assin(x)2,
not as a composition. As with numbers above,sinˆ-1 is rejected, butsinˆ(-1) is interpreted
as 1

sin , not the inverse. Axiom and Maxima rejected all attempts to exponentiate functions without
arguments.

For the trigonometrical functions all CAS usesin , cos , tan , with Mathematica using a capital
initial letter. In all but Derive the system enforcesradian angular measure. Derive offers the user a
choice, with radians the default setting.sec , csc , andcot denote the secant, cosecant and cotan-
gent respectively. Hyperbolic functions were denoted bysinh etc. For inverse trigonometrical func-
tions Maple used the pattern followingarcsin , with Arcsin treated as inert. Mathematica uses
ArcSin , Axiom, Maxima and Derive useasin and so on.

Maxima is case sensitive and in Derive the case sensitivity can be altered. Mathematica capitalizes
the initial letter of all inbuilt keywords in InputForm and StandardForm, though capitalization of
common mathematical functions is optional in TraditionalForm. Maple is case sensitive and uses an
initial capital letter to denote a noun (inert) form which isnot simplified. In Derive the case sensitivity
can be altered. With this in mind, square roots are obtained as follows. In Axiom, Derive and Maple,
sqrt(x) is used. The formSqrt(x) is inert in Maple. Mathematica usesSqrt[x] .

All systems implement the exponential function asexp(x) , with Mathematica using its consistent
variationExp[x] . In all the CAS implementationslog(x) refers to the natural logarithm. Derive
also usedLN to denote the natural logarithm.

All systems useabs to denote the modulus function, rather than using the traditional written form|x|,
where as usual Mathematica usesAbs[x] . Although the symbol| does appear on a keyboard there
would be problems in identifying matching|’s in an expression containing more than one application
of the modulus function, particularly when combined with implied multiplication: eg|a|b-c|d| .

3.3 Sets and lists

In Maple and Derive, sets are a core part of the CAS and are defined using curly braces, for example
a, b, c. In Mathematica, sets as such are not implemented as a distinct data structure; instead, lists (see
below) support certain set theoretic operations. Axiom uses a constructionset[a,b,c] , Maxima
uses bothset(a,b,c) and{a, b, c} .

A list is expressed using square brackets, such as[1,2,2,3] , in all systems except Mathematica,

2Some CAS allow the manipulation of symbols representing functions as objects. Maple’sDoperator acts on a function,
for exampleD(sin) simplifies tocos. At the stages of learning we consider here students are not expected to have
encapsulated the notion of function to that of a single object and we may omit consideration of such notations: a substantial
simplification.

7

which uses curly braces for both sets and lists. Derive and Maxima treat lists in a very similar way
to matrices with one row, or as row vectors. Maple does not take this view having a rather stronger
system for data types.

The use of square brackets to denote lists precludes their use to also denote closed real intervals.
Parentheses, which CAS use to denote grouping of terms, are also used in mathematics to denote
both open real intervals and tuples of numbers, for example co-ordinates. Axiom interprets(1,2)
as a tuple. Maple treats(1,2) as an expression sequence, but strips off the parentheses. Maxima
uses parentheses containing comma separated expressions as a programming construct in which it
evaluates the expressions in sequence and returns the valueof the last expression. In all the CAS, an
expression such as(1,2] was rejected as syntactically invalid.

We have seen significant differences in CAS syntaxes, even atan elementary level. Such differences
become compounded: choices at one level affect those at the next. Since computer systems are
unforgiving to even minor syntax errors, these apparently minute variations really do matter. At this
stage it is well to recall again [2, pg 326] who’s comments on“a profusion of notations (when we
regard the whole science) which threaten, if not duly corrected, to multiply our difficulties instead of
promoting our progress”apply equally well to the variety of syntaxes for existing CAS.

4 Results: students’ use of the AiM system

These results illustrate students’ use of Maple’s syntax within the AiM CAA system, and data is taken
from one year comprising 201 students. We must consider the process used by students to enter their
answers: eventually students are able to express their answer in a syntactically valid. Hence, for
each invalid expression a subsequent edit and re-validation will provide valid form. The student will
probably then ask for this to be marked, generating a third data point. These are all included in an
average and so for each invalid expression there will be one or two extra subsequent valid expressions.
Hence the percentage success rates reported here mask amuch more serious problem.

We compare the beginning of the first semester, with the end ofthe second semester. Data set 1 is
drawn from three tests in weeks 2 and 3, containing a total of11 questions. Data set 2, with12 similar
questions was from the last two weeks of the second semester,some five months later. We consider
only those questions for which the response was a linear algebraic/trigonometric expression. Other
responses, eg lists or matrices, were also interspersed with these questions.

Data set Responses % Syntax error% * ’s %)’s Indet bad−
1 3550 16.51 7.81 3.58 1.83 0.65
2 2951 6.57 1.80 2.17 0.34 0.98

The headings* ’s and)’s respectively indicate the percentage of all responses with missing multiplica-
tion, or mismatched parentheses. The “Indet” error indicates a “strange indeterminant”. For example
typing expˆ(5 * x) would generate this error, sinceexp is being interpreted as a variable name.
Two questions from data set 1 were of this type and accounted for 1.44% of all syntax errors. These
were precisely the problem of using afunctionfor the exponentialex, rather than having the lettere
assumed to represent the base of the natural logarithm and using the ˆ symbol. In the second data
set one question accounted for0.41% of all syntax errors as “bad minus sign”. This is caused by an
expression such asxˆ-4 , whereas the system expects parentheses such asxˆ(-4) .

8

The error rate drops significantly to6.57% by the end of the second semester. This is still high, with
1/3 of all errors being missing parentheses. Note that typical responses from data set 1 were expres-
sions such as9* exp(-1) , and8/11 * xˆ(11/8)+c whereas later in their first year more complex
expressions are required such as
-ln(2 * xˆ7+xˆ2-4)+c or (1/8 * t+3/2) * xˆ2+(-t-31/2) * x+35+15/8 * t . Despite this
added complexity, the competency had significantly improved, as one might expect. Missing paren-
theses become the most significant concern, however these are still necessary in an informal linear
syntax.

4.1 Algebraic expressions: detailed errors

A more detailed analysis is obtained by looking at results toa single question. For example, in week 2
students were asked to integratex

p

q wherep andq were small integers. Students’ raw answers will be
of the form7/12 * xˆ(12/7)+c , involving multiplication, fractional numbers, exponentiation and
parentheses.

The system recorded267 responses from the158 students who attempted this question and72.8% of
these students gave the correct answer on their first attempt, 16.5% on their second attempt. Here5.1%
of students missed parentheses entering one of either7/12 * xˆ12/7 = x

12

12 , or xˆ(12/7)/12/7

= x

12
7

84 . All these students had the correct answer in mind, but theseare essentially syntax problems:
the student has entered an expression which is interpreted in a way other than expected and so had
failed to communicate their answer effectively. Other syntactically valid expressions entered by2
students were7/12(xˆ(12/7)) , and(7/12)(xˆ(12/7)) . Maple interpreted these as function
application. We found19 with a missing multiplication sign and5 with mismatched parentheses.
Three responses contained floating point numbers which are rejected as “invalid”, although this is for
pedagogic not syntactical reasons.

The question “Find
∫

a sin(bx) dx” was also set during week 2. Here we tooka andb as small integers
excluding−1, 0 or 1, and the trig function was randomly selected from eithersin or cos. The system
recorded314 responses from the157 students who attempted this question. Again, the mathematics
was unproblematic:71.3% of students gave the correct answer on their first attempt, and 21.2% on
their second.

Again, missing multiplication signs and unmatched parentheses predominated the syntax errors, with
26.4% of first responses containing one of these mistakes. Additional mistakes specific to this question
included responses such as the following(-1/4) * sin4x+k . Notice the unnecessary parentheses
surrounding the fraction, but those to denote function application are missing, as is a multiplica-
tion sign. Perhaps surprisingly, only one student used white space instead of parentheses, typing
-2 * sin 2 * x + c .

It should be noted that all the preceding examples are taken from early in the first semester, when
students are still learning the syntax, and using it perhapsfor the first time in a real application.
Hence, it is not surprising to find this variety or frequency of errors.

9

4.2 Inequalities

To illustrate inequalities we considered all responses to the question “Solvex2 − 14x + 48 ≤ 0”.
Random versions were given in which the quadratic had rootsa ∈ {2, · · · , 7}, and a selection from
a + {2, · · · , 5}. This was set during the second week of the first semester, during which students had
comparatively little experience. Hence, students were given the following syntax hint.“ Give your
answer as a collection of inequalities such asx < -7 and x >=5 . Don’t use quote marks, and
you can replaceand with or if you need to.”159 students attempted the question, and57.9% obtained
full marks;87.4% made fewer than four incorrect attempts, eventually givinga correct answer.

However,29.2% of students’ answer sequences contained an invalid response, despite the clear syn-
tax hint. Of these,11.3% of students entered their first answer as one would perhaps write it with
an implied logical connective:6<=x<=8 , and a further6.4% of students made this syntax mistake
somewhere else in their answer history. So almost18% of students made this kind of error some-
where, despite the explicit syntax instructions in the question itself: traditional written mathematics
exerts a powerful force on the mind. In addition to this,8.9% of students used either=> or =< in their
answer. A significant number had an answer history consisting of a sequence such as (i)6<=x<=10 ,
(ii) 6<=x=<10 , (iii) x>=6 and x<=10 , where the final answer is both syntactically and mathe-
matically correct. Notice here that the student has the right idea, but cannot express it.

4.3 Sets

The following question requiring entry of sets occurred in the second semester.

If f(x) = ex(x2 − 8) + 8, find all stationary points off(x).

The randomly generated quadratic was guaranteed to have small integer roots. Students were given
the following explicit syntax hint.“Enter the x-values as a set, e.g.{5, 7}”. The system recorded
173 responses to this problem, from138 students, and89.3% obtained the correct answer on the first
attempt and a further7.3% on the second. However,19 responses (11.0%) contained a syntax error.
Ten students tried to enter thecoordinatesof the points, eg “(2,5.92) and (-4,222.40) ” or
“ (2,5.92),(-4,222.40) ”, effectively ignoring the syntax hint.7 students used the wrong kind
of brackets, choosing either parentheses or square brackets instead of the curly brackets indicated.
These students may simply not have been able to discern whichbrackets to use, or they may have
ignored the hint.

We conclude that a strict syntax for inequalities is inappropriate for assessment, even for university
mathematics students, particularly with=< and< = (ie unnecessary space between symbols) which
are unambiguous. The second, perhaps more important, conclusion is that clear syntax hints do not
necessarily ameliorate the problem. Students solve the problem and then expect to type in the answer
using a syntax which closely mirrors their written work. Their mental absorption in the task in hand
results in their temporarily forgetting the syntax hint.

We note that the students in this study are taking either single honours or joint honours mathematics
degree courses. These are some of the highest achieving mathematics students in their generation.
We conjecture that if these students struggle with any aspect of the input syntax, their peers on other
degree programmes or younger school students are even more likely to encounter these problems.
More worryingly, we might also expect others to take longer to learn the syntax, and hence for this to

10

constitute an even more significant barrier to expressing their mathematical ideas. These conclusions
have implications for both formative and high stakes assessment.

5 Discussion

Students make a significant number of mistakes, even when prompted with explicit syntax instruc-
tions. Although these may be apparently trivial to the experienced mathematician our experiences of
using CAA strongly suggests they are quite significant to thestudent. To address this we consider
whether an “informal syntax” might be developed. Both the authors have experience of designing
and implementing such an informal syntax in CAA which rely onvarious heuristics. The designers
of other CAA systems have taken a similar approach and such heuristics are also the basis of related
applications: character recognition systems, and the mathematical pen-based entry systems. Another
example is the ambiguous grammar for mathematics implemented in the Tables of Integrals Look Up
(TILU) system,http://torte.cs.berkeley.edu:8010/tilu . In this section we discuss
these issues, beginning with theprinciples for mathematical notationsset out by [3].

(B1) All notation should be as simple as the nature of the operations to be indicated will admit.

(B2) We must adhere to one notation for one thing.

(B3) Not to multiply the number of signs without necessity.

(B4) When it is required to express new relations that are analogous to others for which signs are al-
ready contrived, we should employ a notation as nearly allied to those signs as we conveniently
can.

(B5) Whenever we wish to denote the inverse of any operation,we must use the same characteristic
with the index−1.

(B11) Parentheses may be omitted, if it can be done without introducing ambiguity.

Principles (B6)–(B10) inclusive refer to operations in higher mathematics or to fonts and formatting
on the printed page and so are not relevant. We note that theseprinciples are by no means universally
accepted; for example, (B5) is used for trigonometric functions in the English speaking world but not
in other European traditions, and is nowhere used for exponential functions. Instead we propose to
augment this list with the following.

(P1) Informal linear syntax should correspond with printed textand written mathematics.
Students can rightly expect us to be consistent in the way mathematics is expressed, as far as is
reasonable given the constraints of a one dimensional inputmechanism.

(P2) Informal linear syntax should not obstruct learning the strict syntax of a CAS.
There should be nothing to un-learn at a later stage.

Our research and development work in CAA suggests that the conflicts are so serious that it isimpos-
sible to implement an informalsyntax. Instead a more protracted process is necessary during which
the student gradually refines their input in the light of feedback from the system. For example, the

11

one dimensional string typed might be displayed in a two dimensional format so that explicit group-
ing of expressions can be more easily perceived in the traditional way. Multiplication might be made
explicit with a× or ·. While this mirrors very closely the mechanism in AiM and Metric we still feel
it necessary to allow a more liberal interpretation of the symbols than is currently in place.

It follows that there might be some ‘unlearning’ to be done atthe transition from written mathematics
to online assessment and then again when a strict CAS syntax is encountered. The ability to commu-
nicate mathematics with a machine is a skill which is likely to become increasingly important. We
feel there is a difference between introducing a new notation to express an established idea, and that
when the meaning of an established notation is changed. We have strenuously avoided the second of
these. Hence, we opt to weaken (B2) so that forms close to written mathematics and strict CAS syntax
should coexist.

The largest source of students’ errors is a missing* and given that juxtaposition traditionally denotes
multiplication this is not particularly surprising. Work such as [9] also found that“for some students
the surface features of ordinary notation provide a necessary cue to successful syntax decisions”. No
contextual information is available to a CAA system and so ambiguity can arise. In some situations
there is no ambiguity, for example: numbers with letters, eg3x interpreted as3* x ; numbers with
parentheses,2(x−1) interpreted as2* (x-1) ; back-to-back parentheses, eg(x−1)(x+1) interpreted
as(x-1) * (x+1) ; a known function, egcos(x) interpreted ascos(x) .

For our application students do not define their own functions with arbitrary names as they might
in a CAS worksheet. Furthermore, the range of named functions used is comparatively small and
all (except perhapsln) have at least three letters, iesin, cos and so on. We also suggest giving
single letters the following implicit meanings, which accords closely with current common usage in
mathematics learning and teaching, ie (P1).a–d, real numbers;e is the base of the natural logarithms;
f–h are unknown functions; andi, j are both

√
−1. We assumek–n are integers,o is unused,p, q are

polynomials, or functions.r–z are real, or perhaps complex, numbers.

A potentially serious problem arises with expressions suchasx(t+1) . If the symbolsx andt are
given implicit meanings the system will always interpret each as a real number, and will therefore
assume that this expression represents amultiplication. However ifx is a time-dependent displace-
ment then this string represents a function. It is not clear to us how asking the student for further
clarification might work in practice. Indeed, there must be adanger that such a query would only
serve to confuse: there is no ready, and generally accepted,notational distinction between the two
interpretations, and attempting to choose on the basis of a verbal distinction might in itself present
students (especially inexperienced ones) with a perplexing challenge. If the idea of giving symbols
implicit meanings is to work, another solution to this classof difficulty needs to be found. The au-
thors’ view, after much consideration, is thateither the idea of implicit symbol interpretations must
be abandonedor authoring systems for CAA need to allow authors to override the default syntax to
provide a context for CAA. Even if implicit symbol interpretations are abandoned the question of the
correct interpretation of expressions likex(t + 1) still arises, and the need may still arise for default
interpretations to be overridden.

These issues illustrate clearly, in the authors’ opinion, that not all problems associated with the inter-
pretation of mathematical expressions in CAA can be solved at the level of the underlying syntax. We
argue that some problems can be solved only by ensuring that input systems contain the facility for
clarification dialogs, or that during CAA authoring it is possible to override default interpretations, or
both. Currently such features are absent.

12

It might also be objected that symbols should remain abstract, as is the case with existing CAS imple-
mentations. In mainstream usage certain lettersdo fulfill traditional roles.

The advantage of selecting in our signs, those which have some resemblance to, or which
from some circumstance are associated in the mind with the thing signified, has scarcely
been stated with sufficient force: the fatigue, from which such an arrangement saves the
reader, is very advantageous to the more complete devotion of his attention to the subject
examined. [2, pg 370]

For example, Babbage suggests the use oft to denote a temporal variable. He also recommends signs
where the meaning is closely associated with the shape such as =, < and≤. Contemporary thought
agrees, for example. [7]

In choosing infix symbols, there is a simple principle that really helps our ability to cal-
culate: we should choose symmetric symbols for symmetric operators, and asymmetric
symbols for asymmetric operators, and choose the reverse ofan asymmetric symbol for
the reverse operator. The benefit is that a lot of laws become visual: we can write an
expression backwards and get an equivalent expression. Forexample,x+y < z is equiv-
alent toz > y +x. By this principle, the arithmetic symbols+ × < > = are well chosen
but− and 6= are not.

In accordance with (B11) and (B1) we propose to accept a spaceto signify function application. So
thatsin x , f x be permitted. Parentheses are then used only to indicate grouping of terms. Function
application then becomessin (2x) , or f (x+1) . We propose to make a space optional when
terms are grouped in function application, to permitsin(2x) , f(x+1) . This closely corresponds
to (P1), and (P2), although not with Mathematica’s unique use of brackets, in InputForm.

We wish to record some specific decisions: since elementary algebra usually assumes the real domain
we use

√
x to refer to the positive square root when it exists, and we regardx

1

2 as synonymous with√
x. In all CAS, inverse trig functions are denoted usingasin or arcsin , so that (B5) conflicts

with (P2). We propose, to agree with (B5) and allowsinˆ-1(x) for the inverse. In keeping with
(B2), we interpretsinˆ2(x) as composition, perhaps with a parser warning of this interpretation.
If function application binds more tightly than exponentiation thensin xˆ2 will be interpreted as
(sin x)2, andsin(xˆ2) is unambiguous. To maintain (P2), other forms for inverse operations are
permitted and there is probably no harm in accepting a variety of forms includingasin , arcsin ,
etc.

We propose to accepteˆx as exponentiation and to retain a functionexp to maintain (P2). Written
mathematics and many hand-held calculators uselog for logarithms to base 10, and usesln for the
natural logarithm, which is an irreconcilable conflict between (P1) and (P2). A radical solution is
that of [4] who proposed the logarithmlog

a
(b) should be written asa↓b by analogy withaˆb . This

accords with (B4), and finesses the problem of a conflict with (B5): eˆ-1 is the reciprocal ofe, not
the inverse. The syntaxa_b aslog

a
(b) is compact (agreeing with (B1)) and also removes the conflict

between (P1) and (P2), but such a radical departure from (P1)may be unacceptable. If not,log
should be retained as the natural logarithm, perhaps with a warning, as shouldln . Logarithms to the
base10 should be entered as10_x or log10 x . To be consistent with (B11), we propose to accept,
expˆ-1 x , lnˆ-1 x andlogˆ-1 x for ln(x), ex andex respectively, even thought this does not
correspond to (P1).

13

White space is sometimes problematic: eg typing< = rather than<=. We cannot ignore all white
space, eg function application or implied multiplication.Examples include2 x , x y (rather than
a variablexy) or x sin(x) . We propose not to permit spaces within numbers, even if these aid
readability. Also CAS accept scientific notation, eg1.1e-49 . We propose takinge to be the base of
the natural logarithm and so this scientific notation shouldbe dropped. We rather feel that requiring
a verbatim expression such as1.1 * 10ˆ-49 reinforces the meaning to the student, which1.1e-49
might obscure.

The absolute value function should be written as eitherabs or using matching| ’s when only two are
present in an expression.

Another significant source of error occurs with chained inequalities such as expressions such as−1 ≤
x ≤ 5. We propose to adopt this convention. Furthermore,<= and=< should by synonymous, and
white space between the symbols=, < and> should be quietly removed.

We propose that lists be entered as a comma separated list between square brackets. Sets be entered
as a comma separated list between curly braces. There is no harm in allowing set(a,b,c) as a
constructor function.

6 Conclusion

What extent should a general increased use of linear syntax affect written mathematics at an earlier
stage? We have workedfrom existing written elementary mathematicstowardsexisting CAS syntax.
Any increase in the use of technology perhaps should affect teaching at an earlier stage. Equally we
might question the design decisions of those implementing CAS and ameliorate the impact of (P2).
Any change has severe implications for current CAS users, eglegacy code. History has consistently
demonstrated that changes to mathematical notation are exceedingly difficult to achieve.

The decision to opt for an input mechanism with an informal syntax depends on the particular student
group and their needs. For this reason we have reported in ourresults and discussions only the issues
raised. We do not propose a fully formed “informal syntax”. For students early in their studies of
mathematics, such as school students or non-specialists learning mathematics at universities, such a
mechanism may be entirely sufficient. Of course, there will be students who need to learn exactly the
syntax of a CAS in order to communicate with it as a useful tool. It may be argued by some thatall
students need to learn a strict CAS syntax, and so should do soearly. We disagree. A more liberal
approach will allow students to concentrate on the mathematics, not the notation. What is the point
of stressing thatx(t + 1) could be a function to students who have yet to encounter the notion of an
abstract function? There will come a point where students perceive or even demand theneedfor a
more strict syntax as their maturity develops. This should be a natural maturation process, which if
correctly designed, the CAA system and its choice of syntax can support.

Given the variety of teaching contexts within the United Kingdom and internationally we do not feel
in a position to conclude this paper with specific proposals.While it is tempting to do so, history has
demonstrated that such an attempt would be futile. While both authors have implemented much of the
proposed liberal syntax of their own in the Metric and STACK CAA systems, it is the responsibility
of teachers to make choices for their own students. This paper is an attempt to highlight what we
consider to be the issues for further debate and discussion.

14

References

[1] Babbage, C., 1821. Observations on the notation employed in the calculus of functions. Trans-
actions of the Cambridge Philosophical Society.

[2] Babbage, C., 1827. On the influence of signs in mathematical reasoning. Transactions of the
Cambridge Philosophical Society II, 325–377.

[3] Babbage, C., 1830. On notations. Edinburgh Encyclopaedia 15, 394–9.

[4] Brown, M., June 1974. Some thoughts on the use of computersymbols in mathematics. The
Mathematical Gazette 58 (404), 78–79.

[5] BS 6727, 1987. Specification for representation of numerical values in character strings for in-
formation interchange. British Standards Institute, BS 6727:1987.

[6] Grabmeier, J., Kaltofen, E., Weispfenning, V., 2003. Computer Algebra Handbook. Springer.

[7] Hehner, C. R., 2004. from Boolean algebra to unified algebra. The Mathematical Intelligencer
26 (2), 3–9.

[8] Hewitt, D., 1996. Mathematical fluency: the nature of practice and the role of subordination. For
the learning of mathematics 16 (2), 28–35.

[9] Kirshner, D., 1989. The visual syntax of algebra. Journal for Research in Mathematics Education
20 (3), 274–287.

[10] Ramsden, P., June 2004. Fresh Questions, Free Expressions: METRICs Web-
based Self-test Exercises. Maths Stats and OR Network online CAA series
http://ltsn.mathstore.ac.uk/articles/maths-caa-seri es/ .

[11] Sangwin, C. J., 2004. Assessing mathematics automatically using computer algebra and the
internet. Teaching Mathematics and its Applications 23 (1), 1–14.

[12] Sangwin, C. J., Grove, M. J., 2006. STACK: addressing the needs of the “neglected learners”.
In: Proceedings of the WebAlt Conference, Eindhoven.

[13] Strickland, N., 2002. Alice interactive mathematics.MSOR Connections 2 (1), 27–30.

[14] Wester, M., 1999. Computer Algebra Systems: a Practical Guide. Wiley.

15

