Linear syntax for communicating elementary mathematics
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Abstract

We consider computer aided assessment (CAA) of mathematigkich a student provides
an answer in the form of a mathematical expression. A comnppnoach is for CAA system
implementors to adopt a linear syntax to allow students tornanicate their answer to the ma-
chine. In this paper we consider the problems students emeowhen mediating between (i)
traditional mathematical notation and (ii) the requiremsest a strict computer algebra system
(CAS) syntax. We compare the linear syntaxes of five commuasdyl general purpose CAS, and
report surprising variety even at the elementary levels.

1 Introduction

Mathematical notation is the product of a long traditiord aas evolved to take advantage of a rich set
of special symbols, together with their relative size ansifmn on a two dimensional page. Certain

aspects reflect good notational design, and even arrangeiieih may be less happy in themselves
have been embedded, perhaps irreversibly, by usage.

Examples of the power of a well contrived notation to conddnto small space, a mean-
ing which would in ordinary language require several linesv@n pages, can hardly have
escaped the notice of most of my readers. [2, pg 330]

This quotation points to theommunicativegpower of a good notation, but in addition to this a well-
designed notation has the ability &ad calculation and thought However, when typing a mathe-

matical expression using a keyboard one has only a one-dior&i string of symbols taken from a

limited alphabet. Translating mathematics into such a &risia fundamental problem. In this paper
we consider the difficulties of mediating between (i) trigial mathematical notation and (ii) the

requirements of a strict computer algebra system (CASpasynt

We were motivated to undertake this work while designingrgoui system for mathematical com-
puter aided assessment (CAA). In particular, we are intedeim CAA in which a student provides
a mathematical expression and the system establishesrfgespgutomatically, rather than (say) se-
lecting from among a list of suggested answers, as in a nrultipice question. Using a mainstream
CAS to support this has become increasingly popular ovelastefive years. Perhaps the first was
AiM, described by [13] which uses Maple. CalMath uses Mathtica, CABLE uses Axiom and the
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STACK system [fttp://www.stack.bham.ac.uk ) uses Maxima ([12]). From private corre-
spondence, the authors are also aware of Derive being usesinnilar way. In these cases the CAA
system is layered on top of the CAS, and students must usentae kyntax of the CAS itself. Itis
not necessary to use a CAS to process student responses AoatAmany systems have their own
input syntaxes. The Metric system of Ramsden and May (sggifl@ne example, and our discussion
is just as relevant to these systems. In this paper we

1. review the syntaxes of Maple, Maxima, Axiom, Derive andtihdanatica and compare these
with mainstream mathematical usage;

2. examine students’ ability to use one of these when comeating with the CAA system AiM,
which uses Maple’s syntax;

3. argue for, and discuss the characteristics of, an “indbisgntax” designed for the purpose of
mathematical CAA of school level algebra and calculus.

We draw a distinction between twaategories of userthe professional and the student; we make the
case that students, in particular, may experience probtemsected with strict syntax. We also draw
a distinction, within the ‘student’ category, between todes of useon one hand, problem-solving
and calculation and, on the other, assessment. It is in theexioof assessment that, we argue, these
syntax issues become especially problematic. The follgvguotation is from a student’s detailed
comments, in course feedback, about the AiM system of [18Juawhich we shall say more below:

| feel the aim system is reasonably fair, however i have |dst af marks in quiz 3 for
simple syntax errors.

Strictly, this student had not madesgntax error his or her interpretation of this string was simply
different from that of AiM’s underlying CAS; this resulted repeated incorrect attempts and pre-
sumably frustration. This is despite the fact that he or sk dnswered the problem correctly at
the level of mathematics: the ‘error’ was purely technidAhatever the benefits or drawbacks of a
non-standard, especially precise syntax in problem+sgland calculation, such a syntax has clear
disadvantages if students taking tests are required td,yz@cisely because of this risk of failing on
a technicality. This, we feel, is unacceptable.

2 Methodology

2.1 Background to existing CAS

For the purposes of this paper we focus entirely on expnessentered in the CAS'’s ‘basic’ linear
syntax, as strings of keyboard characters. The first seofioasults contains a review of Derive 5,
Maple 9.03, Mathematica 5.0 and Maxima 5.10.0, and a vexdidxiom compiled from the source
code of November 24th 2004. All of these have been used in@@AA. The differences between the
various CAS have been discussed elsewhere, for example [B}]. However, these comparisons are
from the point of view of the research mathematician. Furttuge, although both these works contain
chapters on mathematics education, neither addressesadlems students experience when using
thelinear, typewritten syntax of the CAS concerned; instead, eackamnates on issues connected



with the use of the system’s graphical Front End. Front Esdds, while important, are not our
concern here. Many CAS have well-developed user interftatssupport 2D typesetting. Such
facilities are not available to an assessment system lainiguhe CAS and so, for this reason, students
are expected instead to type their answers into a text aisig the mediation issues that we treat
here. We examine the very basic linear syntax of each sysiathpay particular attention to the
syntax for arithmetic, algebra and the entry of functionscemtered in elementary mathematics, such
assin, log etc. We then consider briefly the syntax for entry of sets atsl. |

In this paper we restrict comments itgput syntaxand refrain from commenting on evaluation and
simplifications. Establishing properties of expressiceg,equivalence is central to CAA, but lies
outside the scope of this paper: see [11].

2.2 Students’ errors with Maple’s linear syntax

To examine students’ use of a strict CAS syntax we considecdmputer aided assessment system
AiM ([13]) built upon Maple. AiM is an internet-based systeahat can be used for both formative
and summative assessment, both of which are fully auton{atdded, it might more accurately be
described as a system for computer assessment rather timguter-aided assessment, although the
latter is the conventional term). Space precludes a ddtdiscription of AiM here; see instead [13]
or [11]. In the AiM system, students’ answers are enteredgusiaple’s linear syntax, and these are
evaluated. AiM has been in regular use in a number of unityersathematics departments in the
United Kingdom and internationally since 1999. We consttieruse of AiM by first year students at
one such institution. Each week during the first year of stagproximately\200 students take a quiz
consisting of betweeh0 and20 short answer practice questions, usually randomly gesnatthin
carefully structured templates.

We are interested in the use of syntax for genuine tasks, hehvearning the syntax itself. Hence,
records from the first week of the first year are excluded. Gtugents’ attempts at actual mathe-
matical questions are considered. When answering suchiopgshe students’ attention should be
focused on the mathematics and the task of using the CASxsigsabsumed (in the sense of [8]).

AiM records every attempt of the student together with thi@as requested and all outcomes, such as
feedback. For each syntactically invalid expression ttetesy applies various heuristics for common
mistakes in an attempt to provide helpful feedback. Theseistes result in a “ValidationNote”,
which indicates what might be wrong with a particular regmmrand it is these which we use to help
identify and group syntax errors. Unfortunately, theselmamisleading as to the actual source of the
error. What the validation notes do achieve is a groupingraire into similar kinds. Really the only
way to establish exactly what the student has done wrongdagamine each answer, which we do in
subsequent sections in greater detail.

3 Results: existing CAS syntax

Many CAS terminate an expression with a punctuation charaghich also acts as a separator be-
tween adjacent expressions and controls whether the liegaltbe displayed. These are shown in
Table 1. For Derive we have listed the terminating symbals execute and display. This performs
“basic simplification”, and other terminating symbols penfi different simplifications.



CAS Display Nodisplay « e v—1 0

Axiom [NONE] ; %pi %e %i  %pluslinfinity
Derive = [NONE] pi #e #i inf
Maple ; : Pi  exp(l) I infty
Mathematica [NONE] ; Pi E I Infinity
Maxima : $ %pi %e %i Inf

Table 1: Entry of basic commands

In all the CAS the default number base is ten, with rationahbers being expressed as a division
using the symbo} (for example2/3 ). The decimals separator is a full stop, which is uncontisiaé

in the United Kingdom, Ireland and their former colonies.wdwer, most of Europe uses a comma
to denote the decimal separator instead. There are alsyatiffes in printed notation between the
full stop, eg3.1415, and a center dot, €§)- 1415, which cannot be captured using keyboard input.
The extent to which digits are grouped to ease the readingnglelr numbers varies from country to
country, as do the symbols used to separate the groups. 8téyl] comma, space or apostrophe are
all used for this purpose. At variance with [5], none of the&parse numbers with digits grouped
and separated with a space, 28 000. Mathematica and Derive accept this as valid, with the
interpretation of implied multiplication. All CAS resensecomma to separate distinct data items, eg
in a set or list.

Another ambiguity occurs with juxtaposition of integergldractions, such as i?l%. Only Mathemat-
ica accepts this as valid, but interprets itgasan implied multiplication, rather than as an addition, ie
as%. Yet another arises in combinatorics and probability, vwhaultiplication of integers is some-
times denoted using a center dot, so that i3
S
rather than interpretingas a decimal separator.

6,

Differences in the ways very simple numbers are interpraredillustrated in Table 2. In all sys-
tems except Derive and Mathematica, the st@fge-2 is interpreted as scientific notation for the
floating point numbef.025. Mathematica requires eith&t5 »10°-2 ,2.5 107-2  or, unusually,
2.5 *7-2 . Derive need2.5 *107-2 , which in the default settings is coerced into a ratioﬁ)aINo
other system coerces floats into rational numbers by defthbugh this paper is not about simplifi-
cation or evaluation settings.

When a unary minus precedes a number one might expect the miraus to bind more tightly than
any other prefix, postfix or binary operator, to signify thatis a single entity, the number minus four.
This interpretation would result 42 = (—4)? = 16. However it does not, and all CAS interpret
-4"2 = —(4%) = —16. Inspection of many contemporary text books reveals thatstraam usage
adopts a similar approach to the unary minus as the CASrgliest. However, there is inconsistency
among the various systems when a unary minus follows dyrétin a binary arithmetic operation,
as with the stringt™-2 . Here only Maple returns a syntax error. The rational nurr%bierentered as
1/2 . This is literally interpreted as the natural numhetivided by2, so that the division order of
precedence is used, rather than treaértgs a single mathematical entity: a rational number

1Again in evaluation, there are very subtle differences. lapaluates9™1/2 as%g, whereas all other systems return



CAS 23 000 2.6e-2 4-2  -971/2 x+-2 X *-2

Axiom ERROR  0.026 L —§ -2 -2z
Derive 0 e _2 = =2 r—2 —2x
Maple ERROR  0.026 ERROR - ERROR ERROR
Mathematica 0 —2+26e & -2 —2+z -2
Maxima ERROR  0.026 = -3 -2 -2z
Table 2: Entry of numbers

CAS Assignment Equation Function definition Boolean infix
Axiom = = == =

Derive = = = =

Maple = = = =
Mathematica = (or:=) == = (or=) ==
Maxima : = = =

Table 3: Expressing different forms of equality

Entry of constantsr, e, v/—1 and oo are shown in Table 1, with particular attention being paid to
capitalization. Herex is the positive real infinity, CAS usually differentiate eten this, negative
real infinity and complex infinity. None of the systems ugeih place ofi to denotey/—1. For
Mathematica, the table above gives the InputForm versidmshnare supported in the other input
formats.

In all the CAS, both ande are interpreted as arbitrary variables, not mathematmadtants. Hence
in e°x thee is simply an arbitrary and undefined variable. Systems amvalhe constant defined in
Table 1 to be raised to a power using the exponential notatioRor example, in Maximé&oe™x is
legitimate. The extent to which simplification is necesdargstablish equivalence of these two forms
varies between the different CAS.

Note that in Maplepi andPi are different, with the former simply being the variable otexl by the
Greek letter. However, both are displayed exactlyzgs This is not the case with the Greek letter
gammawhich is interpreted by Maple, not as a variable, but as Butemstant;y ~ 0.5772.

Robert Recorde originally used his parallel liresto auoide the tedious repetition of these woordes:
is equalle to”. Their usage has evolved since 1557 to stand for four guitereint operations which
are (i) assignment of a value to a variable; (ii) to denote guagon yet to be solved,; (iii) definition
of a function; and finally (iv) as a Boolean infix operator,urging either TRUE or FALSE. The
choices made by various CAS are shown in Table 3. In Mathematiough not in some other CAS
implementations such as Maple, senses (ii) and (iv) arentialle equivalent.

Note that Mathematica distinguishes betwammediate assignmenthich happens when the variable
or function is defined, andelayed assignmemthich happens when the variable or function is called.
The symbol= is used for the former, and- for the latter, so that the appropriate assignment for

—g. In the former the first operation is division, in the secand unary minus.



variables is usually immediate and functions delayed. & powerful and useful distinction but
experience with students indicates that this is apt to canfu

There are differences in the Boolean functiomsrp forms) for logical NOT, AND, OR etc, and
correspondingiounforms used as connectives, which we do not detail here.

Inequalities use their keyboard symbols, with non-strietjualities using= or >=. All systems reject
minor variants of this syntax, including = (ie with a space between), ex. Only Mathematica
accepts chains of inequalities, suchlasc x < 2, interpreting this as a list of inequalities, all of
which must hold.

3.1 Arithmetic and basic algebraic expressions

All the CAS considered use a linear direct algebraic logiatay, with infix binary operators for
arithmetic, rather than Polish Notation. This corresporidsely to traditional written mathematics,
eg “two timesx” is expressed a2+ x, rather tharr 2 x. All used parentheses for grouping terms.

The arithmetic binary operations, — and/ were identical in all systems. All but Derive and Mathe-
matica were strict in requiring an explicit multiplicati@gn* . Derive allows implied multiplication
under some circumstances. That is to say it inter[2etas2+* x. Mathematica’'s InputForm exploits
the fact that parentheses are never used to enclose furggoments, see Section 3.2, and there-
fore allows a multiplication sign to be omitted wherevesthiould not be ambiguous. For example
2x, X(x-1) and(x+1)(x-1) are all interpreted multiplicatively, budy is interpreted as a single
variable with a two letter name. However, in MathematicaraditionalForm, parentheses may be
used to enclose function arguments, creating fresh patdoti ambiguities. In TraditionalForrx

and (x+1)(x-1) are interpreted as multiplication, wheregs-1) s treated as a function. To
force multiplication, the user must inert either an askedsa space character. Note, however, that
TraditionalForm is not a linear syntax but a 2D formatted, @ependent on Mathematica’'s Front End
functionality, and therefore not in general available taistom CAA application.

Exponentiation was denoted using the synibat all systems, with Axiom also using . Factorials
are obtained using a postfix operator, régin all systems except Axiom, which used the function
factorial(n) . Prefix notation is also available in some systems for thteragtic operators. For
examplex + y could be entered in MathematicaRisiS[x, Y] or in Maxima using'+"(x,y)

3.2 Functions

The syntax for functions, egin(x), shows significant systematic differences. Mathematies tise
function name followed by the argument enclosed in bracifetsexample f[x]), and parentheses are
reserved for grouping terms. Other CAS use parenthesemathgfor example f(x)). Both Derive
and Axiom accept a space to signify function application.r &mample,sin x , is interpreted as
sin(z) with parentheses required only to group termsceg (n *pi) . Here the space is optional.
Using a space in this way reduces the number of symbols. €usin sin x is interpreted as a
compositionsin(sin(x)), which can be written naturally an? 2. This approach led Babbage to his
“calculus of notations”, [1], with the natural consequetitat the inverse is now written asm~'. So
one could write

sin"! sin z = sin®™Y 2 =sin® z = 2.



(We do not comment here whether this is mathematicallyitegie.) Itis interesting to note the incon-
sistency with modern usage, in whism?(z) is generally used to denofein(z))?, while sin~! ()

is, in the English-speaking tradition, taken as the invenather than the reciprocal efn(x). Derive
was unique in acceptingin"2(x)  as(sin x)?, and was consistent in interpretisg™-1(x) as
—L_. However, this differs from current usage for the inverseatiématica accep8in™2 [x]
andSin“(-1) [x] , but does not interpret them. One quirk unique to Maple isinterpretation
of 2(x+1) as the application of the constant functidto the argumentz + 1), which results in the
value2. Hencesin"2(x) is the sine function raised to the power2(k) , which is the constant
function 2 and argument. This is interpreted asin?, which is a function, rather than the result of
applying a function to an argumeéniThe expressiosin? when applied ta, is interpreted asin(z)?,
not as a composition. As with numbers abosi& -1 s rejected, busin™(-1) is interpreted
asﬁ, not the inverse. Axiom and Maxima rejected all attemptsxjpoaentiate functions without

arguments.

For the trigonometrical functions all CAS us&n , cos, tan , with Mathematica using a capital
initial letter. In all but Derive the system enforcexlian angular measureDerive offers the user a
choice, with radians the default settingec , csc , andcot denote the secant, cosecant and cotan-
gent respectively. Hyperbolic functions were denotedimy etc. For inverse trigonometrical func-
tions Maple used the pattern followiragcsin , with Arcsin treated as inert. Mathematica uses
ArcSin , Axiom, Maxima and Derive usasin and so on.

Maxima is case sensitive and in Derive the case sensitiatybe altered. Mathematica capitalizes
the initial letter of all inbuilt keywords in InputForm ande®dardForm, though capitalization of
common mathematical functions is optional in TraditiormatR. Maple is case sensitive and uses an
initial capital letter to denote a noun (inert) form whichist simplified. In Derive the case sensitivity
can be altered. With this in mind, square roots are obtaisddlws. In Axiom, Derive and Maple,
sgrt(x)  is used. The fornsqrt(x) is inertin Maple. Mathematica us&srt[x]

All systems implement the exponential functioneag(x) , with Mathematica using its consistent
variationExp[x] . In all the CAS implementation®g(x) refers to the natural logarithm. Derive
also used.N to denote the natural logarithm.

All systems useabs to denote the modulus function, rather than using the toait written form|z|,
where as usual Mathematica ugdss[x] . Although the symbo] does appear on a keyboard there
would be problems in identifying matchirjg in an expression containing more than one application
of the modulus function, particularly when combined wittplied multiplication: eda|b-c|d|

3.3 Sets and lists

In Maple and Derive, sets are a core part of the CAS and areedktising curly braces, for example
a, b, c. In Mathematica, sets as such are not implementedistirecddata structure; instead, lists (see
below) support certain set theoretic operations. Axionswseonstructiorset[a,b,c] , Maxima
uses botlset(a,b,c) and{a, b, c}

A list is expressed using square brackets, suci 252,3] , in all systems except Mathematica,

2Some CAS allow the manipulation of symbols representingtions as objects. MapleB operator acts on a function,
for exampleD(sin) simplifies tocos. At the stages of learning we consider here students arexpeicted to have
encapsulated the notion of function to that of a single dtded we may omit consideration of such notations: a subatant
simplification.



which uses curly braces for both sets and lists. Derive andiivkatreat lists in a very similar way
to matrices with one row, or as row vectors. Maple does nat thls view having a rather stronger
system for data types.

The use of square brackets to denote lists precludes theitoualso denote closed real intervals.
Parentheses, which CAS use to denote grouping of terms,|ssraused in mathematics to denote
both open real intervals and tuples of numbers, for examplerdinates. Axiom interpretgl,2)

as a tuple. Maple trea(d,2) as an expression sequence, but strips off the parenthessami
uses parentheses containing comma separated expressiangregramming construct in which it
evaluates the expressions in sequence and returns theofdheelast expression. In all the CAS, an
expression such 44,2] was rejected as syntactically invalid.

We have seen significant differences in CAS syntaxes, evan alementary level. Such differences
become compounded: choices at one level affect those atetkte 18ince computer systems are
unforgiving to even minor syntax errors, these apparenthyute variations really do matter. At this
stage it is well to recall again [2, pg 326] who's comments‘amprofusion of notations (when we
regard the whole science) which threaten, if not duly caedcto multiply our difficulties instead of
promoting our progress’apply equally well to the variety of syntaxes for existing £A

4 Results: students’ use of the AiM system

These results illustrate students’ use of Maple’s syntdkiwihe AiM CAA system, and data is taken
from one year comprising 201 students. We must considerrtieeps used by students to enter their
answers: eventually students are able to express theireansva syntactically valid. Hence, for
each invalid expression a subsequent edit and re-validatilb provide valid form. The student will
probably then ask for this to be marked, generating a thitd daint. These are all included in an
average and so for each invalid expression there will be othemextra subsequent valid expressions.
Hence the percentage success rates reported here nmasthanore serious problem

We compare the beginning of the first semester, with the eritleofecond semester. Data set 1 is
drawn from three tests in weeks 2 and 3, containing a total gfuestions. Data set 2, wifl2 similar
guestions was from the last two weeks of the second semsstee five months later. We consider
only those questions for which the response was a lineabag#trigonometric expression. Other
responses, eg lists or matrices, were also interspersadheise questions.

Dataset Responses % Syntax erm/o *'S  %)’s Indet bad—
1 3550 16.51 781 358 183 0.65
2 2951 6.57 1.80 217 0.34 0.98

The headings 's and)’s respectively indicate the percentage of all respons#smissing multiplica-
tion, or mismatched parentheses. The “Indet” error indigat “strange indeterminant”. For example
typing exp”(5 *x) would generate this error, sin@xp is being interpreted as a variable name.
Two questions from data set 1 were of this type and accouwied 44% of all syntax errors. These
were precisely the problem of usinganctionfor the exponentiaé®, rather than having the letter
assumed to represent the base of the natural logarithm amgl the~ symbol. In the second data
set one question accounted fod1% of all syntax errors as “bad minus sign”. This is caused by an
expression such as-4 , whereas the system expects parentheses sucit4s

8



The error rate drops significantly ©57% by the end of the second semester. This is still high, with
1/3 of all errors being missing parentheses. Note that typesponses from data set 1 were expres-
sions such a8+ exp(-1) ,and8/11 *x"(11/8)+c  whereas later in their first year more complex
expressions are required such as

-In(2 *X"7+x"2-4)+c or (1/8 *t+3/2) *X2+(-t-31/2) *X+35+15/8 *t. Despite this
added complexity, the competency had significantly impdpess one might expect. Missing paren-
theses become the most significant concern, however thessilhnecessary in an informal linear
syntax.

4.1 Algebraic expressions: detailed errors

A more detailed analysis is obtained by looking at resulessmngle question. For example, in week 2
students were asked to integrat% wherep andg were small integers. Students’ raw answers will be
of the form7/12 = x"(12/7)+c , involving multiplication, fractional numbers, exponiation and
parentheses.

The system recorde?b7 responses from the58 students who attempted this question @®&% of
these students gave the correct answer on their first attémpts on their second attempt. Hesd %

1.12

of students missed parentheses entering one of éit@r « x"12/7 = %, orx"(12/7)/12/7
12

= %_Z- All these students had the correct answer in mind, but thesessentially syntax problems:
the student has entered an expression which is interpretadsvay other than expected and so had
failed to communicate their answer effectively. Other agtitally valid expressions entered By
students wer&/12(x"(12/7)) ,and(7/12)(x"(12/7)) . Maple interpreted these as function
application. We found 9 with a missing multiplication sign andl with mismatched parentheses.
Three responses contained floating point numbers whicheggeted as “invalid”, although this is for
pedagogic not syntactical reasons.

The question “Find/ a sin(bx) dx” was also set during week 2. Here we taoindb as small integers
excluding—1, 0 or 1, and the trig function was randomly selected from eithieror cos. The system
recorded314 responses from th&57 students who attempted this question. Again, the mathemati
was unproblematic71.3% of students gave the correct answer on their first attempk2ar2% on
their second.

Again, missing multiplication signs and unmatched pares#is predominated the syntax errors, with
26.4% of first responses containing one of these mistakes. Additimistakes specific to this question
included responses such as the follow{aty4) =*sindx+k . Notice the unnecessary parentheses
surrounding the fraction, but those to denote function iappbn are missing, as is a multiplica-
tion sign. Perhaps surprisingly, only one student usedemsjiace instead of parentheses, typing
-2*sin 2 *X + C.

It should be noted that all the preceding examples are taken &arly in the first semester, when
students are still learning the syntax, and using it pertiapshe first time in a real application.
Hence, it is not surprising to find this variety or frequenégors.



4.2 Inequalities

To illustrate inequalities we considered all response$héoquestion “Solver> — 14z + 48 < 0.
Random versions were given in which the quadratic had reats{2,--- , 7}, and a selection from
a+{2,---,5}. This was set during the second week of the first semestengdwhich students had
comparatively little experience. Hence, students werergihe following syntax hint* Give your
answer as a collection of inequalities suchxas< -7 and x >=5 . Don’'t use quote marks, and
you can replacend with or if you need to."159 students attempted the question, &id% obtained
full marks; 87.4% made fewer than four incorrect attempts, eventually gidrggprrect answer.

However,29.2% of students’ answer sequences contained an invalid respdaspite the clear syn-
tax hint. Of these]1.3% of students entered their first answer as one would perhaips i#vwith

an implied logical connective6<=x<=8 , and a furthe6.4% of students made this syntax mistake
somewhere else in their answer history. So alné$t of students made this kind of error some-
where, despite the explicit syntax instructions in the toedtself: traditional written mathematics
exerts a powerful force on the mind. In addition to thi$% of students used either or =< in their
answer. A significant number had an answer history congistira sequence such as §g=x<=10 ,

(i) 6<=x=<10, (iii) x>=6 and x<=10 , where the final answer is both syntactically and mathe-
matically correct. Notice here that the student has the fitga, but cannot express it.

4.3 Sets

The following question requiring entry of sets occurrediia second semester.
If f(x)=e*(z% —8) + 8, find all stationary points of ().

The randomly generated quadratic was guaranteed to haukisteger roots. Students were given
the following explicit syntax hint.“Enter the x-values as a set, e.d45,7}". The system recorded
173 responses to this problem, from8 students, and9.3% obtained the correct answer on the first
attempt and a further.3% on the second. However9 responsesl(l.0%) contained a syntax error.
Ten students tried to enter tieeordinatesof the points, eg(2,5.92) and (-4,222.40) " or
“(2,5.92),(-4,222.40) ", effectively ignoring the syntax hint7 students used the wrong kind
of brackets, choosing either parentheses or square bsacistéad of the curly brackets indicated.
These students may simply not have been able to discern vohéadkets to use, or they may have
ignored the hint.

We conclude that a strict syntax for inequalities is inappiaie for assessment, even for university
mathematics students, particularly witkk and< = (ie unnecessary space between symbols) which
are unambiguous. The second, perhaps more important,ustorelis that clear syntax hints do not
necessarily ameliorate the problem. Students solve thdgmoand then expect to type in the answer
using a syntax which closely mirrors their written work. Trhaental absorption in the task in hand
results in their temporarily forgetting the syntax hint.

We note that the students in this study are taking eithetesimgnours or joint honours mathematics
degree courses. These are some of the highest achievingmreatibs students in their generation.
We conjecture that if these students struggle with any asgdhbe input syntax, their peers on other
degree programmes or younger school students are even ikalgetb encounter these problems.
More worryingly, we might also expect others to take longeetrn the syntax, and hence for this to
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constitute an even more significant barrier to expressiag thathematical ideas. These conclusions
have implications for both formative and high stakes assens

5 Discussion

Students make a significant number of mistakes, even whenpgtea with explicit syntax instruc-
tions. Although these may be apparently trivial to the eigmemed mathematician our experiences of
using CAA strongly suggests they are quite significant tostuelent. To address this we consider
whether an “informal syntax” might be developed. Both théhats have experience of designing
and implementing such an informal syntax in CAA which relyvamious heuristics. The designers
of other CAA systems have taken a similar approach and sugtiskies are also the basis of related
applications: character recognition systems, and theenadltical pen-based entry systems. Another
example is the ambiguous grammar for mathematics implesdentthe Tables of Integrals Look Up
(TILU) system,http://torte.cs.berkeley.edu:8010/tilu . In this section we discuss
these issues, beginning with thenciples for mathematical notatiorset out by [3].

(B1) All notation should be as simple as the nature of theatfns to be indicated will admit.
(B2) We must adhere to one notation for one thing.
(B3) Not to multiply the number of signs without necessity.

(B4) When itis required to express new relations that aréogoas to others for which signs are al-
ready contrived, we should employ a notation as nearlydalbehose signs as we conveniently
can.

(B5) Whenever we wish to denote the inverse of any operati@rnust use the same characteristic
with the index—1.

(B11) Parentheses may be omitted, if it can be done withdrddacing ambiguity.

Principles (B6)—(B10) inclusive refer to operations integ mathematics or to fonts and formatting
on the printed page and so are not relevant. We note that phiesles are by no means universally
accepted; for example, (B5) is used for trigonometric fioms in the English speaking world but not
in other European traditions, and is nowhere used for exgi@idunctions. Instead we propose to
augment this list with the following.

(P1) Informal linear syntax should correspond with printed tartl written mathematics.
Students can rightly expect us to be consistent in the walhienadtics is expressed, as far as is
reasonable given the constraints of a one dimensional mpahanism.

(P2) Informal linear syntax should not obstruct learning thadtsyntax of a CAS.
There should be nothing to un-learn at a later stage.

Our research and development work in CAA suggests that thidicis are so serious that it iIs\pos-

sibleto implement an informasyntax Instead a more protracted process is hecessary durindnwhic
the student gradually refines their input in the light of feeck from the system. For example, the
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one dimensional string typed might be displayed in a two disianal format so that explicit group-
ing of expressions can be more easily perceived in the ibaditway. Multiplication might be made
explicit with a x or -. While this mirrors very closely the mechanism in AiM and Ketve still feel

it necessary to allow a more liberal interpretation of thekgls than is currently in place.

It follows that there might be some ‘unlearning’ to be don#hattransition from written mathematics
to online assessment and then again when a strict CAS sysm&countered. The ability to commu-
nicate mathematics with a machine is a skill which is likelybecome increasingly important. We
feel there is a difference between introducing a hew notaticexpress an established idea, and that
when the meaning of an established notation is changed. Wedtieenuously avoided the second of
these. Hence, we opt to weaken (B2) so that forms close tewnmhathematics and strict CAS syntax
should coexist.

The largest source of students’ errors is a missimmd given that juxtaposition traditionally denotes
multiplication this is not particularly surprising. Workich as [9] also found th&tor some students
the surface features of ordinary notation provide a necgssae to successful syntax decisionslo
contextual information is available to a CAA system and sdiguoity can arise. In some situations
there is no ambiguity, for example: numbers with letters3egnterpreted a8+ x; numbers with
parentheseg(z—1) interpreted a8+ (x-1) ; back-to-back parentheses,(@g-1)(z+1) interpreted
as(x-1) *(x+1) ;aknown function, egos(z) interpreted asos(x)

For our application students do not define their own fundtiwith arbitrary names as they might
in a CAS worksheet. Furthermore, the range of named furstised is comparatively small and
all (except perhap$n) have at least three letters, s, cos and so on. We also suggest giving
single letters the following implicit meanings, which aod® closely with current common usage in
mathematics learning and teaching, ie (R}, real numberse is the base of the natural logarithms;
f—h are unknown functions; ang; are both,/—1. We assumé-n are integersp is unusedp, ¢ are
polynomials, or functionsr—z are real, or perhaps complex, numbers.

A potentially serious problem arises with expressions agk(t+1) . If the symbolsz andt are
given implicit meanings the system will always interpretlieas a real number, and will therefore
assume that this expression representsudtiplication However ifx is a time-dependent displace-
ment then this string represents a function. It is not cleaug how asking the student for further
clarification might work in practice. Indeed, there must ba@aager that such a query would only
serve to confuse: there is no ready, and generally acceptgational distinction between the two
interpretations, and attempting to choose on the basis eflzal/ distinction might in itself present
students (especially inexperienced ones) with a perpglesirallenge. If the idea of giving symbols
implicit meanings is to work, another solution to this clagglifficulty needs to be found. The au-
thors’ view, after much consideration, is thetherthe idea of implicit symbol interpretations must
be abandonedr authoring systems for CAA need to allow authors to overrigedefault syntax to
provide a context for CAA. Even if implicit symbol interpegions are abandoned the question of the
correct interpretation of expressions liké + 1) still arises, and the need may still arise for default
interpretations to be overridden.

These issues illustrate clearly, in the authors’ opinibat hot all problems associated with the inter-
pretation of mathematical expressions in CAA can be solvélaedevel of the underlying syntax. We
argue that some problems can be solved only by ensuringrtpat systems contain the facility for
clarification dialogs, or that during CAA authoring it is giide to override default interpretations, or
both. Currently such features are absent.
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It might also be objected that symbols should remain alistaads the case with existing CAS imple-
mentations. In mainstream usage certain lettieriulfill traditional roles.

The advantage of selecting in our signs, those which have sesemblance to, or which
from some circumstance are associated in the mind with thg #ignified, has scarcely
been stated with sufficient force: the fatigue, from whicbhsan arrangement saves the
reader, is very advantageous to the more complete devdtios attention to the subject
examined. [2, pg 370]

For example, Babbage suggests the usagoflenote a temporal variable. He also recommends signs
where the meaning is closely associated with the shape sueh-a and<. Contemporary thought
agrees, for example. [7]

In choosing infix symbols, there is a simple principle thatlsehelps our ability to cal-
culate: we should choose symmetric symbols for symmetréraiprs, and asymmetric
symbols for asymmetric operators, and choose the reverae afymmetric symbol for
the reverse operator. The benefit is that a lot of laws becamel we can write an
expression backwards and get an equivalent expressiorxeoplex +y < z is equiv-
alent toz > y + . By this principle, the arithmetic symbols x < > = are well chosen
but — and=# are not.

In accordance with (B11) and (B1) we propose to accept a dpagignify function application. So
thatsin x ,f x be permitted. Parentheses are then used only to indicaipiggpof terms. Function
application then becomesn (2x) , orf (x+1) . We propose to make a space optional when
terms are grouped in function application, to persiit(2x) , f(x+1) . This closely corresponds
to (P1), and (P2), although not with Mathematica’s unique afdrackets, in InputForm.

We wish to record some specific decisions: since elemenigepia usually assumes the real domain
we use,/z to refer to the positive square root when it exists, and wanda-g% as synonymous with
V. In all CAS, inverse trig functions are denoted usagin or arcsin , so that (B5) conflicts
with (P2). We propose, to agree with (B5) and allsin™-1(x) for the inverse. In keeping with
(B2), we interpretsin™2(x)  as composition, perhaps with a parser warning of this ingtagion.

If function application binds more tightly than exponetita thensin x"2  will be interpreted as
(sin )2, andsin(x"2)  is unambiguous. To maintain (P2), other forms for inverseratons are
permitted and there is probably no harm in accepting a yaageforms includingasin , arcsin
etc.

We propose to accegfx as exponentiation and to retain a functiexp to maintain (P2). Written
mathematics and many hand-held calculatorslugdor logarithms to base 10, and udesfor the
natural logarithm, which is an irreconcilable conflict betm (P1) and (P2). A radical solution is
that of [4] who proposed the logarithing,, (b) should be written as |b by analogy witha™b . This
accords with (B4), and finesses the problem of a conflict vB)(e™-1 is the reciprocal ot, not
the inverse. The syntax_b aslog, (b) is compact (agreeing with (B1)) and also removes the conflict
between (P1) and (P2), but such a radical departure from r{ia) be unacceptable. If ndpg
should be retained as the natural logarithm, perhaps witaraing, as shoulth . Logarithms to the
basel0 should be entered 49 x orlogl0 x . To be consistent with (B11), we propose to accept,
exp™-1 x ,In"-1 x andlog™1 x forln(x), e* ande® respectively, even thought this does not
correspond to (P1).
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White space is sometimes problematic: eg typing rather thank=. We cannot ignore all white
space, eg function application or implied multiplicatioBxamples include® x, x y (rather than
a variablexy) or x sin(x) . We propose not to permit spaces within numbers, even ietlags
readability. Also CAS accept scientific notation, ede-49 . We propose taking to be the base of
the natural logarithm and so this scientific notation shdxddiropped. We rather feel that requiring
a verbatim expression suchh4 *107-49 reinforces the meaning to the student, whiche-49
might obscure.

The absolute value function should be written as eitier or using matching ’s when only two are
present in an expression.

Another significant source of error occurs with chained iraditjes such as expressions such-ds<
x < 5. We propose to adopt this convention. Furthermereand=< should by synonymous, and
white space between the symbeis < and> should be quietly removed.

We propose that lists be entered as a comma separated lisgdresquare brackets. Sets be entered
as a comma separated list between curly braces. There isrnoiallowing set(a,b,c) as a
constructor function.

6 Conclusion

What extent should a general increased use of linear syfffizct avritten mathematics at an earlier
stage? We have workdtbm existing written elementary mathematios/ardsexisting CAS syntax
Any increase in the use of technology perhaps should a#ecthing at an earlier stage. Equally we
might question the design decisions of those implementiA® @nd ameliorate the impact of (P2).
Any change has severe implications for current CAS usertegagy code. History has consistently
demonstrated that changes to mathematical notation aee@ixgly difficult to achieve.

The decision to opt for an input mechanism with an informaltay depends on the particular student
group and their needs. For this reason we have reported iresults and discussions only the issues
raised. We do not propose a fully formed “informal syntax’or Btudents early in their studies of
mathematics, such as school students or non-specialisting mathematics at universities, such a
mechanism may be entirely sufficient. Of course, there wilstudents who need to learn exactly the
syntax of a CAS in order to communicate with it as a useful.tdioinay be argued by some thait
students need to learn a strict CAS syntax, and so should darbp We disagree. A more liberal
approach will allow students to concentrate on the mathemsatot the notation. What is the point
of stressing that(¢ + 1) could be a function to students who have yet to encounterdtiemof an
abstract function? There will come a point where studentsgdee or even demand theeedfor a
more strict syntax as their maturity develops. This sho@dmatural maturation process, which if
correctly designed, the CAA system and its choice of syngaxsupport.

Given the variety of teaching contexts within the United ¢gdom and internationally we do not feel
in a position to conclude this paper with specific propos@lkile it is tempting to do so, history has
demonstrated that such an attempt would be futile. Whilk bathors have implemented much of the
proposed liberal syntax of their own in the Metric and STACKACsystems, it is the responsibility
of teachers to make choices for their own students. Thisrpapan attempt to highlight what we
consider to be the issues for further debate and discussion.

14



References

[1]

[2]

[3]
[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

Babbage, C., 1821. Observations on the notation emglay¢he calculus of functions. Trans-
actions of the Cambridge Philosophical Society.

Babbage, C., 1827. On the influence of signs in mathemlate&asoning. Transactions of the
Cambridge Philosophical Society I, 325-377.

Babbage, C., 1830. On notations. Edinburgh Encyclojgat8, 394-9.

Brown, M., June 1974. Some thoughts on the use of comyterbols in mathematics. The
Mathematical Gazette 58 (404), 78—79.

BS 6727, 1987. Specification for representation of nucaérvalues in character strings for in-
formation interchange. British Standards Institute, B&B81987.

Grabmeier, J., Kaltofen, E., Weispfenning, V., 2003nputer Algebra Handbook. Springer.

Hehner, C. R., 2004. from Boolean algebra to unified algelbhe Mathematical Intelligencer
26 (2), 3-9.

Hewitt, D., 1996. Mathematical fluency: the nature ofgifee and the role of subordination. For
the learning of mathematics 16 (2), 28-35.

Kirshner, D., 1989. The visual syntax of algebra. JoufoaResearch in Mathematics Education
20 (3), 274-287.

Ramsden, P., June 2004. Fresh Questions, Free BExgmessi METRICs Web-
based Self-test Exercises. Maths Stats and OR Network eonlBAA series
http://ltsn.mathstore.ac.uk/articles/maths-caa-seri es/ .

Sangwin, C. J., 2004. Assessing mathematics autoatlgtiosing computer algebra and the
internet. Teaching Mathematics and its Applications 231%14.

Sangwin, C. J., Grove, M. J., 2006. STACK: addressirgrbeds of the “neglected learners”.
In: Proceedings of the WebAlt Conference, Eindhoven.

Strickland, N., 2002. Alice interactive mathematit$SOR Connections 2 (1), 27-30.

[14] Wester, M., 1999. Computer Algebra Systems: a PrddBcide. Wiley.

15



