
An Investigation on the Dynamics of
Direct-Manipulation Editors for Mathematics�

Luca Padovani and Riccardo Solmi

University of Bologna, Department of Computer Science
Mura Anteo Zamboni 7, 40127 Bologna, Italy

{lpadovan, solmi}@cs.unibo.it

Abstract. Mathematical expressions are pieces of structured informa-
tion that could benefit from direct-manipulation approaches for docu-
ment authoring. Yet, not only there is disagreement on the behaviors
of authoring tools, but also these behaviors are often ill-designed and
poorly implemented. This situation leads to dissatisfaction amid users
who prefer more classical editing approaches.

In this paper we compare the behaviors of several state-of-the-art
editors for mathematical content and we try to synthesize a set of rules
and principles to make the authoring experience pleasant and effective.

1 Introduction

Direct-manipulation editors for mathematical content allow an author to edit in
place a mathematical formula as this is formatted and displayed on the screen
in its traditional notation. Editing and displaying occur simultaneously and the
formula is reformatted at every modification. These editors are usually character-
ized by the fact that they work on a structured representation of the document,
hence they fall in the category of model-based editors.

Despite their aim of being “friendlier”, direct-manipulation editors turn out
to be rather unattractive to use for both unexperienced and advanced users since
they suffer from severe usability problems. In fact, they are more challenging
to design: the use of a structured model requires the editor to implement some
kind of incremental parsing meaning that user actions are mapped on non-trivial
operations on the model. At the same time, part of the information about the
model structure is not displayed in order to reduce the user’s awareness of the
model and to provide a familiar, lightweight presentation. We claim that these
are not sufficient reasons that prevent the design of a direct-manipulation editor
with good, effective usability [9, 1].

While we do not aim to describe the behavior of the perfect model-based
editor for mathematical content, we can at least try to highlight the deficiencies
in the existing tools. The goal is to synthesize a set of principles inspired by
successful text-based editors and common usability guidelines and to provide a
qualitative evaluation of the examined math editors on these bases.

� This work was supported by the European Project IST-2001-33562 MoWGLI.

A. Asperti et al. (Eds.): MKM 2004, LNCS 3119, pp. 302–316, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Direct-Manipulation Editors for Mathematics 303

The structure of the paper is as follows: in Section 2 we describe the dynamics
of a number of direct-manipulation editors for mathematics. We enrich the prose
of the descriptions with a graphical notation whose purpose is to capture the
dynamic behavior of the editors on a static medium like the paper. In Section 3
we do a little step back to the world of text editors, for which a tighter and
more standardized set of rules and behaviors have emerged over the years. The
analysis of these rules will be the starting point for our proposal in Section 4,
where we try to classify distinct and possibly orthogonal aspects of model-based
editors, in particular editors for mathematics, and list some intuitive guidelines
for their development. We conclude in Section 5 with a comparison of the tested
editors.

2 Behaviors

We began our analysis by trying out a number of currently available editors to
understand how behaviors were implemented and what rationales were behind
the choices. The following is the list of the products that we have tried. Some
of them are just software components whose only purpose is to display and edit
mathematical formulas, others are more complex applications for which editing
mathematics is only an auxiliary (sometimes indispensable) functionality:

1. Amaya version 8.2. Web page: http://www.w3.org/Amaya/
2. FrameMaker by Adobe, version 7.

Web page: http://www.adobe.com/products/framemaker/main.html
3. MathType by Design Science, version 5.2.

Webpage:http://www.mathtype.com/en/products/mathtype/, see also[13].
4. Scientific WorkPlace by MacKichan Software, version 5

Web page: http://www.mackichan.com/products/swp.html
5. LyX version 1.3.4. Web page: http://www.lyx.org/, see also [6].
6. Mathematica by Wolfram, version 5.

Web page: http://www.wolfram.com/products/mathematica/index.html
7. TEXmacs version 1.0.1.23. Web page: http://www.texmacs.org/

The products have been chosen to represent the current state-of-the-art in
both commercial and freely available software.

2.1 Models and Edit Points

One of the characteristics of these editors is that they are model-oriented rather
than text-oriented. By this we mean that the internal representation of the edited
document is structured and the editing commands work directly on the internal
representation. This is the main source of problems because editing operations
(including movements) are performed on a non-linear data structure that, once
displayed, may convey only partially or approximately the overall information
it represents. For example, if the model represents the sum of two entities as a
binary node, because of the associativity law of addition a sum like x + y + z

http://www.w3.org/Amaya/
http://www.adobe.com/products/framemaker/main.html
http://www.mathtype.com/en/products/mathtype/
http://www.mackichan.com/products/swp.html
http://www.lyx.org/
http://www.wolfram.com/products/mathematica/index.html
http://www.texmacs.org/


304 L. Padovani and R. Solmi

may be displayed with no parentheses, thus concealing the actual structure which
may be either one of (x + y) + z or x + (y + z).

Because of the structured nature of the internal application model, the infor-
mation that is necessary for unambiguously specifying the point where the next
editing operation will occur is made of:

– the node of the model pointed to;
– the index, also called insertion point, indicating the sub-part of the node

where something has to be inserted. Terminal (or leaf) model nodes, which
usually represent identifiers, numbers, and, more generally, sequences of char-
acters, typically have as many indexes as the number of characters plus one.
Non-terminal (or internal) model nodes have a number of valid indexes which
may vary depending on the structure of the model.

We call the combination of these two entities edit point.1 Most editors give a
visual feedback for both entities. The index is typically presented by a vertical
bar called caret. The node presentation, called focus, ranges from a horizontal line
spanning the node’s horizontal extent on the view, a prolongated caret spanning
the node’s vertical extent on the view, a solid or dashed rectangle surrounding
the node, and so on. Some editors like amaya have no visual feedback for the
focus at all, others like lyx and texmacs emphasize all the elements from the root
of the internal application model to the focus. amaya and texmacs give additional
feedback at the bottom of the editing window by providing the stack of node
names from the root of the document down to the edit point.

In this paper we represent the caret with�or
�

symbols and we underline the
focused node. For example, s�n represents a focused token node whose content
are the two letters ‘s’ and ‘n’, with the caret sitting in between. An insertion of
the character ‘i’ would change the node to si�n.

2.2 Presentation of Missing Information

Model-based editors are usually constrained by the structure of the model. For
example, a node of the model representing a binary operator may be required
to have two child nodes, one for each operand. However the sequential nature
of the editing process prevents the document to be well-formed at all times.
Missing parts of the document that are expected to be filled in are called slots.
The visual feedback of slots may vary, ranging from question marks on a reverse
background in framemaker, to solid or dashed rectangles in mathtype, mathematica,
and lyx to nothing at all in texmacs.

2.3 Basic Moves

Since the purpose of editing is to change a document and since the operations
that change the document are performed at edit points, one of the main concerns

1 The use of the term “point” dates back to the TECO editor as documented in [12].



Direct-Manipulation Editors for Mathematics 305

Table 1. Traversal of a horizontal group of elements

amaya framemaker, mathtype, mathematica, lyx, scien-
tific workplace, texmacs

〈right〉
...

�� + �
��+ �
��+ �
� +��
� +��
� + ��

�� + �
��+ �
� +��
� + ��

〈left〉∗ reverse reverse

is how to reach edit points. We will devote this section to a comparison of the
various strategies adopted by the editors. In order to do so, we present a series of
tables, each of them devoted to a common mathematical construct. The tables
show the movements of the caret and possibly of the focus as the user requests
a sequence of actions. Actions are triggered by keystrokes: 〈left〉, 〈right〉, 〈up〉, 〈down〉
represent the basic cursor movement keys. In the tables time flows from top
to bottom, the keystrokes are shown in the leftmost column of the diagram
whereas the cells in the other columns show the state of the various editors after
the action associated with that keystroke has been executed. We denote with
the word “reverse” sequences of states that mirror the corresponding states for
the opposite action. We denote arbitrary subexpressions with the symbol � and
assume that they are traversed with a single action.

Rows. We start with a simple list of identifiers separated by operators (Table 1).
Even for this simple formula editors may have different behaviors. The amaya
editor advances the caret by a little step between identifiers and operators, thus
moving from the end of a node in the model to the beginning of the next one. This
gives visual feedback about the focused node, which is assumed to be the one the
caret is closest to, but the user has the impression of a slowed-down traversal.
Conversely, the other editors provide a natural traversal behavior where one
action corresponds to one step.

Scripts. Next we examine the scripting construct (Table 2), which is used for
exponents, indices, integration limits, and so on. From a geometrical point of
view this is the construct where bi-dimensional layout starts playing an im-
portant role since scripts are vertically shifted with respect to the main base-
line.

The observed behavioral variants include: full traversal of the scripts (amaya
and mathematica), deterministic traversal of a subset of the scripts (mathtype
and scientific workplace), skipping of the scripts unless an explicit action is re-



306 L. Padovani and R. Solmi

Table 2. Traversal of scripts

amaya,
mathematica

framemaker lyx mathtype scientific
workplace

texmacs

〈right〉

...

���
�

��
�
�

��
��

��
��

�
�

�
�

��
�

�

��
��

���

���

��� + �

��� + �

��� + �

���+ �

�� +��

���
�

��
�
�

��
��

���
�

��
�
�

��
��

��
��

��
��

���
�

��
�
�

�
�

�
�

��
�

�

��
��

���
�

��
�
�

��
�� �

�

�
�

��
��

��
�

�

��
��

〈left〉∗ reverse reverse reverse,
but not
always
(see text)

reverse reverse reverse reverse

quested (framemaker and lyx, note however that lyx traverses one more edit point).
A particularly original behavior is observed in the texmacs editor, in which only
one of the two scripts is traversed: the script that was visited last in the previ-
ous traversal is the one to be visited during the next traversal. framemaker is also
bizarre: the traversal is reversible if the state reached by 〈right〉 moves is �� +��,
but it is not reversible if the reached state is �� + ��.

The 〈up〉 and 〈down〉 keys have very different associated behaviors: from no-ops
to switching between subscripts and superscripts, to jumping to the beginning
or the end of the whole construct.

Radicals. Roots (Table 3) can be thought as a variant of the script construct,
from both semantical and notational points of view. Still they present very dif-
ferent behaviors if compared to scripts. Again the traversals range from partial
to full navigation of the subparts, and again framemaker presents an odd behav-
ior that is not reversible in some cases. The mathtype editor skips the index and
provides no way of accessing it except by moving the caret on a different line
and finding an edit point such that a vertical movement in the opposite direction
causes the caret to hit the index.

Fractions. In Table 4 we traverse fractions. This construct is characterized by
a clear vertical layout which is completely orthogonal to the baseline. Here too
the behaviors are very different, although slightly less bizarre, probably because
there is no horizontal component in the displacement of the subparts. Again we



Direct-Manipulation Editors for Mathematics 307

Table 3. Traversal of roots

amaya framemaker lyx,
texmacs

mathematica mathtype scientific
workplace

〈right〉

...

�
�√�

�

�√�
�
�√
�

�√
��

�√��

�√��

�
�√� + �
�√

�� + �
�√��+ �
�
�√
� + �

�√� + ��

�
�√�

�

�√�
�
�√
�

�√
��

�√��

�√��

�
�√�
�√

��
�√��

�

�√�
�
�√
�

�√��

�
�√�
�√

��
�√��

�√��

�
�√�

�

�√�
�
�√
�

�√
��

�√��

�√��

〈left〉

...

reverse �√� +��
�
�√
� + �

�

�√� + �

�
�√� + �

reverse reverse reverse reverse

Table 4. Traversal of fractions

amaya,
mathematica

framemaker lyx mathtype scientific
workplace

texmacs

〈right〉

...

�
�
�

�

�
�

�
�

�

�
��

�
��

�
��

�
�
�

�
��

�

�
� + �
�
�

� + �
�

�� + �
�
��

+ �
�
� +��

�
�
�

�

�
�

�
�

�

�
��

�
�
�

�

�
�

�
�

�

�
��

�
�
�

�

�
�

�
�

�

�
��

�
�
�

�
��

�

�
�

�
��

�
�

�

�
��

〈left〉

...

reverse reverse reverse �
��

�
��

�
�
�

reverse reverse reverse

recognize full traversals in amaya and mathematica, partial deterministic traversal
in lyx, mathtype and scientific workplace (lyx has a different traversal in the opposite
direction), inner traversal caused by explicit user action in framemaker, and par-



308 L. Padovani and R. Solmi

tial, visited-last-dependent traversals in texmacs. In all cases 〈up〉 and 〈down〉 cause
the caret to be moved from the numerator to the denominator or vice versa.

Table 5. Traversal of matrices

amaya,
mathematica

framemaker lyx mathtype scientific
workplace

texmacs

〈right〉

...

�

� �
� �

�� �
� �
�� �
� �
� ��
� �
� ��

� �
� �

�� �
� �
�� �
� �
� ��
� �
� ��

� �
� ��

�

(
� �
� �

)

(
� �
� �

)
�

�

� �
� �

�� �
� �
�� �
� �
� ��
� �
� ��

� �
� �
� ��

�

(
� �
� �

)

(
�

� �
� �

)

(
� �
� ��

)

(
� �
� �

)
�

�

(
� �
� �

)

(
�

� �
� �

)

(
�� �
� �

)

(
�� �
� �

)

(
� ��
� �

)

(
� ��

� �

)

(
� �
� ��

)

(
� �
� �

)
�

�

(
� �
� �

)

(
� �

�� �

) (
�� �
� �

)

(
� �
�� �

) (
� �
�� �

)

(
� �
� ��

) (
� ��
� �

)

(
� �
� ��

) (
� ��

� �

)

(
� �
� �

)
�

〈left〉∗ reverse reverse reverse reverse reverse reverse

Matrices. Finally we examine a truly bidimensional mathematical construct in
Table 5, which shows the traversal of possibly fenced matrices. In framemaker the
construct is skipped unless the user triggers the 〈down〉 action explicitly, in which
case a full traversal is performed.

2.4 Special Moves

Aside basic moves, most editors provide a behavior associated with the 〈tab〉 key
that causes the edit point to jump across parts of the model following varying
strategies. Among the observed ones there are: cycling the empty slots of the



Direct-Manipulation Editors for Mathematics 309

whole formula (framemaker, mathematica and mathtype); moving to the next slot
(lyx, there is no inverse action); cycling the child nodes of the focused node
(scientific workplace). amaya and texmacs have no behavior associated with the 〈tab〉
key.

Regarding 〈up〉 and 〈down〉 moves, they do not always behave geometrically. For
example, in framemaker the 〈down〉 key has the effect of moving the edit point
down the structure to the first child of the node being edited and the 〈up〉 key
has the effect of moving the the edit point up the structure to the parent of the
node being edited. In mathematica 〈up〉 and 〈down〉 have a context-sensitive behavior
which is not always geometrical. In lyx the behavior is partially geometrical but
constrained by the model structure. For example, moving from a superscript
down towards the subscript (or from a subscript up towards the superscript)
causes the edit point to be placed just after the base element.

2.5 Editing Actions

Constrained Versus Unconstrained Editing. Different editors have different con-
cepts of a well-formed formula and consequently they constrain editing opera-
tions in very different ways. On one end is framemaker which tries to keep the
formula semantically meaningful. So, for example, the user is prevented from
entering a formula like a + + b and parentheses must always be balanced. math-
ematica sometimes provides different variants of a construct, one algebraic and
one typographical, that have different constraints. Other editors like amaya and
lyx have a looser concept of well-formed formula and, apart from the constraints
imposed by the typographical structure of the formula, they allow for much
more freedom in the editing process. In mathtype editing is almost totally un-
constrained, for instance it is possible to have scripts not associated with a base
element.

Templates and Overlays. These concepts represent two similar ways of assisting
the author in changing the structure of the document. Templates are partial
formulas with empty slots. The user can insert a template in a certain point
of the document, typically at the current edit point or, if the editor allows it,
in place of a previously selected part of the document. Overlays are special
templates in which one designated slot is filled with the document part that is
referenced by the edit point or that is selected at the time the overlay is inserted.
All of the tested editors implement one or the other or, more frequently, both
templates and overlays.

Delete Commands. Delete commands for model-based editors are particularly
delicate because the edit point may refer to internal nodes of the model. In
the particular case of fractions, Table 6 shows some of the observed behaviors
associated with the 〈bksp〉 key (delete to the left of the caret): entering the node,
similar to a 〈left〉 move (mathematica and texmacs); entering the node and deleting
recursively (amaya); deleting the whole node in one shot (framemaker and lyx);
selecting the node and deleting it only if the user repeats the action (mathtype,
in the table the selected fraction is shown inside a box).



310 L. Padovani and R. Solmi

Table 6. Different behaviors associated with the deletion of fractions

amaya framemaker lyx mathematica mathtype texmacs

〈bksp〉

〈bksp〉

�
��

�
�

��

�
��

�

�
��

�

�
��

�
��

�
�

�
��

�
�

�

�
��

�
��

�
�

3 Learning from Text Editors

Although a plain text document can be seen as a monodimensional entity (a
stream of characters), word processors usually introduce some structure by al-
lowing parts of the text to be annotated with style information. So, albeit to a
limited extent, even text editors are based on a somehow structured model. In
their case, however, there happens to be a much stronger convergence of behav-
iors associated with user actions. We can characterize such behaviors, at least
with respect to the kind of actions we have been examining so far, as follows:

– basic steps on the document view can be achieved by means of basic user
actions (basic = one keystroke). The emphasis is on the view rather than on
the model. For example the behaviors associated with the 〈up〉 and 〈down〉 keys
move the edit point to another one (on a different line) that is not adjacent
with respect to model structure.

– basic operations like insert or delete actions act on the smallest entity in the
proximity of the edit point;

– when provided, movements and operations on the document model (move-
ment from a word to the following or preceding ones, the deletion of a whole
line, and so on) require the user to perform dedicated actions;

– there are no fake moves: each user action clearly corresponds to a definite
movement of the caret in the view. The user is never required to perform
extra movements to get across different elements on the model (e.g. entering
a part of text which has a different style requires no extra moves if compared
to continuing moving on a paragraph with the same style);

– movements are geometrically reversible: in any position except for the doc-
ument border, one 〈left〉 nullifies exactly one 〈right〉, one 〈up〉 nullifies exactly
one 〈down〉. Modern editors have often preferred reversibility of actions over
simpler geometrical movements: for example moving from the end of a line
to a shorter one causes a horizontal displacement of the caret, however a
reverse move restores the caret location.

Editors providing different styles have to face the problem of edit point clash-
ing. When the caret is placed between two characters having different associated
styles, which style is taken for the next inserted character? Some editors try to
give the caret a different appearance (like drawing a slanted vertical bar instead



Direct-Manipulation Editors for Mathematics 311

of a straight one, or drawing a caret which is as tall as the current font size)
but this is not always enough to disambiguate the focus in general. Most edi-
tors implement a deterministic rule like “the style of the character preceding the
caret is taken” which works well in all cases but a few rare exceptions. In editors
for mathematical content this solution might be impractical because the model
structure is more complex and plays a much more important role.

4 Analysis and Proposal

Although the two kinds of editors, for structured mathematical content and for
plain text, are conceptually very different, we believe that the set of behaviors
they implement could and should share a large common ground. In this respect,
the current state-of-the-art math editors are certainly unsatisfactory and this
claim is supported by the following observations:

– the application model is exposed to the user: while working at the model
level simplifies the implementation of the editor, it also forces a view of the
document which often does not match the user’s mental image of the math-
ematical formula being edited. Geometric movements, editing operations,
selections should not be constrained by the model unless the user explicitly
requests so;

– model-oriented and geometric navigation modes are mixed: for example, the
〈right〉 keystroke sometimes triggers a geometric move and sometimes it trig-
gers a movement on the model. In other cases, see for example the framemaker
editor, 〈right〉/〈left〉 always behave geometrically, but 〈up〉/〈down〉 correspond to
movements on the model;

– important feedback, like the placement of empty slots in amaya and texmacs,
is sometimes missing;

– there is excess of useless feedback. There is no point in showing a focus if it
serves no purposes in terms of feedback (moreover the focus is very model
dependent by definition). Even less useful, and actually confusing, is showing
the structure of the document in places that are not directly related to the
edit point (see the texmacs editor);

– unexpected or ambiguous behaviors lack suitable feedback: operations that
are uncommon in text editors (like deletion of a complex model node) should
be carefully implemented (see deletion in framemaker and lyx);

– some actions are non-deterministic: they depend on a state of the document
which is not made explicit by any form of feedback;

– simple movements are not always reversible;
– there is lack of dedicated views for model-oriented navigation and editing.

What follows is our proposal for a more uniform editing behavior.

Edit Points. It is fundamental for the application to provide effective visual
feedback of the caret. The caret should give the impression of actual movement,
while the focus should be displayed only if it helps disambiguating the context



312 L. Padovani and R. Solmi

where actions take place. In fact the focus may be misleading when the editor
implements incremental parsing rules that override the focus position depending
on the requested actions. For example, upon insertion of the digit 2 from either
one of the states 1�+ and 1�+ the editor might go into the state 12�+. In this case
the focus prior to the insertion does not necessarily indicates the model node
affected by the operation.

Slots. While an empty slot occupied by the caret might need no visual feedback,
parts of the document that are missing should be clearly identifiable and easily
reachable.

It is often convenient to provide a quick way for moving across the slots
within the document (or within a smaller scope such as a single formula). This
functionality is typically accessed by the 〈tab〉 key (and 〈shift〉 + 〈tab〉 for moving
in the opposite direction). As there is quite general agreement on this behavior
among the current editors, there are no particular principles to be listed except
for reversibility. The order in which the slots are visited is also of secondary
importance as the user expects the caret to jump anyway and the number of
slots, which is typically very limited, makes them all reachable very quickly.

Geometric Navigation. This should be the default navigation mode as it is con-
sistent with the “what-you-see-is-what-you-get” principle that the user edits
what she sees. More precisely, the user should be allowed to traverse the docu-
ment in such a way that basic move actions cause an actual, yet basic, movement
of the caret in the requested direction. As formulas often occur inside text, where
geometric movements are commonly accepted, these rules should apply within
the formulas as well in order to guarantee adequate consistency. More specifically:

– the caret is moved to the geometrically closest and deepmost edit point in
the direction of the movement. The notion of “direction” we are referring to
here is necessarily blurred, as in mathematical notation related parts (like
a base and its associated script) are often placed with both horizontal and
vertical displacements;

– in case of ambiguities (edit points at different locations that are equally
distant and equally deep) the editor should behave in a deterministic way.
The model structure can be used for resolving such ambiguities;

– the movement should be perceived by the user as worthwhile, the user should
not be required to move across entities she has not inserted explicitly;

– movements of the caret on the view should be reversible whenever possible.

Determinism is important for avoiding the introduction of a state in the user’s
mental image of the document (“which node have I visited last?”).

The geometric navigation mode does not guarantee in general that all the
available edit points are traversed. The principle that prefers deeper edit points
ensures that the caret is moved on a position where operations have the less
disruptive effect on the structure of the model.

Content Navigation. As text editors normally allow the navigation at some
larger granularity (like the granularity of words and paragraphs) we may expect



Direct-Manipulation Editors for Mathematics 313

a similar functionality for editors of mathematical formulas. An analogous con-
cept of higher-level entity for mathematics may be that of subexpression, or
subformula. Unfortunately, this concept is so broad (and often fuzzy) that it
cannot be used for the implementation of a generally useful navigation mode.

It is however possible to provide simple navigation modes that are based on
a smaller higher granularity, like that of tokens, with the purpose of speeding
up document navigation. The principles of geometric navigation should hold at
this level as well.

Model Navigation. This navigation mode is indispensable for reaching edit points
that are not accessible using the geometric navigation mode alone. However, we
regard this as a far less frequent navigation mode, especially because it requires
the user to have a fairly clear understanding of the model structure used by the
application. For these reasons we strongly advocate the use of one or more ded-
icated views that enable model-oriented navigation and editing functionalities.
This approach is followed by so called two-view editors, such as [5, 7, 4, 10] and
also by some modern Integrated Development Environments2 where a special
view is provided to show a structured outline of the edited documents.

Selection. The basic selection mode should allow for the maximum flexibility. In
particular, it should be possible to select parts of the edited document that have
no semantic meaning or that form incomplete subexpressions, the same way as
movements and editing should be unconstrained as much as possible. Because
of the complex bidimensional layout of mathematical formulas, it should be
possible to refine a selection in multiple, discrete steps, rather than allowing
only a one-shot action of the user.

Notwithstanding this, it is not excluded the possibility of using the applica-
tion model for enabling constrained forms of selection even on the classical view.
For instance, it may be important to notify the user that the selection she has
made does not entirely cover a valid3 model subpart and that subsequent paste
operations might fail for this reason.

Editing. Depending on the application and on the model structure, the range of
editing operations available at one specific edit point may vary significantly. In
the tested editors operations mostly work at the bottommost level (the leaves
of the model), while operations on the model structure are limited to selection,
cut-and-paste, deletion. However, as we have already discussed in the paragraph
regarding edit points in this section, editors may implement incremental pars-
ing rules such that even simple user actions cause deep rearrangements in the
structure of the document (similar approaches are presented in [15, 14, 8]). This
way, the editing environment would provide for improved flexibility thus reduc-
ing training time and discomfort while keeping the actual structure of the model
hidden from the user.

2 See for instance Eclipse, http://www.eclipse.org
3 The notion of validity is obviously application-dependent.

http://www.eclipse.org


314 L. Padovani and R. Solmi

5 Concluding Remarks

It was during the implementation of a model-based editor for mathematical doc-
uments that we gradually realized the countless and subtle difficulties that this
kind of application underlies. When we turned our attention to existing editing
tool, hoping to grab some knowledge about the implemented behaviors and about
the user needs and expectations, it was surprising to find out that no two editors
shared exactly the same behavior on every aspect, and that several choices made
by implementors seemed supported by no solid motivations. The amazing range
of possibilities cannot be justified merely on the basis that different editors have
different underlying document models. Although such differences do exist, the
editors should still strive for providing a comfortable and familiar environment.

Precise descriptions of the dynamics of model-based editors are rare in the
bibliography. Incidentally, none of the tested editors provides comprehensive
documentation about their behavior, probably because the behavior cannot be
easily described on a static medium like the paper. A few informal attempts in
this direction can be found in [15], where a token-oriented model is proposed,
and in [8]. Barfield [2] has tried to classify tree-editing operations and some of
his ideas influenced the navigation modes in Section 4.

Comparisons of document editors have usually the aim of measuring their
effectiveness in terms of rate of accomplished tasks, average number of errors,
and so on. In the case of text editors, most of the work was carried out during the
eighties. Of particular relevance are Roberts et al. [11] and Borenstein [3]. Some
interesting statistics about document editors can also be found in Whiteside
et al. [16], where the importance of movement actions is highlighted. This is
one of the reasons why we have devoted so much effort in understanding and
analyzing geometric moves in the examined editors. It is reasonable to assume

Table 7. Scores of the tested editors

am
ay

a

fr
am

em
ak

er

ly
x

m
at

he
m

at
ic

a

m
at

ht
yp

e

sc
ie

nt
ifi

c
w
or

kp
la

ce

te
xm

ac
s

Edit point feedback • • ◦ • • •
Edit point accessibility ◦ • ◦ • ◦ •
Geometric moves ◦ ◦ ◦ • ◦
Reversibility of moves ◦ • • • • •
Deterministic moves • ◦ • • • • ◦
Model view • ◦ ◦
Slot navigation • ◦ • • ◦
Selection flexibility • ◦ ◦ ◦ ◦ ◦ ◦
Model structure ◦ • ◦ ◦ ◦



Direct-Manipulation Editors for Mathematics 315

that a similar suite of tests can be prepared for editors for mathematical content,
but to the best of our knowledge no formal comparison has been developed so
far.

At last, we could not refrain from summarizing the usability of the tested
editors. For each of the features investigated in this paper we have given a
measure of usability of its implementation. In Table 7 an empty cell means “not
implemented” or “poor support”, a ◦ symbol means “partial support” and a
• symbol means “good support”. We have also given a rough measure of the
complexity of the model used by the editors. Intuitively, the more complex the
model the more difficult it is to implement behaviors that respect our proposals.
The results are clearly subjective and approximate. In fact, in many cases we
could only guess about the model structure adopted by the editor. However, the
table provides us with a rather strong feeling that direct-manipulation editors
can be significantly improved, and that this might justify their unpopularity
among both unexperienced and expert users.

References

1. Apple Computer, Inc. “Apple Human Interface Guidelines”, March 2004,
http://developer.apple.com/documentation/UserExperience/Conceptual/
OSXHIGuidelines/

2. L.G. Barfield, Editing Tree Structures, Technical Report CS-R9264, Amsterdam,
1992.

3. N.S. Borenstein, The evaluation of text editors: a critical review of the Roberts
and Morgan methodology based on new experiments, Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 99–105, San Francisco,
California, 1985.

4. K.P. Brooks, A Two-view Document Editor with User-definable Document Struc-
ture, Digital Systems Research Center, Palo Alto, CA, November 1988.

5. J. Fine, Instant Preview and the TEX daemon, TUGboat, 22(4), pp. 292-298, De-
cember 2001.

6. L.E. Jackson, H. Voß, LyX – An Open Source document processor, TUGboat, Vol.
22, Number 1/2, pp. 32-41, March 2001.

7. D. Kastrup, Revisiting WYSIWYG Paradigms for Authoring LATEX, Proceedings
of the 2002 Annual Meeting, TUGboat, Volume 23, No. 1, 2002.

8. J.-F. Nicaud, D. Bouhineau, T. Huguet, The Aplusix-Editor: A New Kind of Soft-
ware for the Learning of Algebra, LNCS 2363, pp. 178–187, Springer-Verlag, Berlin,
2002.

9. D.A. Normal, The Psychology of Everyday Things, Basic Books, Inc., Publishers,
New York, 1988.

10. L. Padovani, Interactive Editing of MathML Markup Using TEX Syntax, to ap-
pear in the Proceedings of the International Conference on TEX, XML and Digital
Typography, 2004.

11. T.L. Roberts, T.P. Moran, The evaluation of text editors: methodology and empir-
ical results, Communications of the ACM archive, Volume 26 , Issue 4, New York,
NY, USA, April 1983.

12. R. Stallman, GNU Emacs Manual, for Version 20.1, Thirteenth Edition, Free Soft-
ware Foundation, Cambridge, MA, USA, 1997.

http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/
http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/


316 L. Padovani and R. Solmi

13. P. Topping, Using MathType to Create TEX and MathML Equations, Proceedings
of the 1999 TEX Annual Meeting, TUGBoat, Volume 20, No. 3, 1999.

14. M.L. Van De Vanter, Practical Language-Based Editing for Software Engineers, in
Proceedings of Software Engineering and Human-Computer Interaction: ICSE ’94
Workshop on SE-HCI: Joint Research Issues, LNCS 896, pp. 251–267, Springer-
Verlag, Berlin, 1995.

15. M.L. Van De Vanter, M. Boshernistan, Displaying and Editing Source Code in
Software Engineering Environments, Proceedings of the Second International Sym-
posium on Constructing Software Engineering Tools, CoSET’2000.

16. J. Whiteside, N. Archer, D. Wixon, M. Good, How do people really use text edi-
tors?, Proceedings of the SIGOA conference on Office information systems, pp. 29–
40, New York, NY, USA, 1982.


	Introduction
	Behaviors
	Models and Edit Points
	Presentation of Missing Information
	Basic Moves
	Special Moves
	Editing Actions

	Learning from Text Editors
	Analysis and Proposal
	Concluding Remarks

