
WExEd - WebALT Exercise Editor
for Multilingual Mathematics Exercises

Arjeh Cohen? Hans Cuypers? Karin Poels? Mark Spanbroek? Rikko Verrijzer?

amc@win.tue.nl hansc@win.tue.nl k.j.p.m.poels@tue.nl m.j.m.spanbroek@tue.nl r.verrijzer@tue.nl

?Department of Mathematics and Computer Science
Eindhoven University of Technology

Eindhoven, The Netherlands

Abstract— Recently, the computer program WExEd was
developed within the WebALT project. It enables one to
create and edit interactive mathematics exercises that can
be automatically translated to and subsequently played in
different languages (currently English, Spanish, Finnish,
Swedish and Italian). It makes use of OpenMath, a stan-
dard for encoding the semantics of mathematical objects
in XML, and software developed within WebALT. WExEd
does not only encode the mathematics of the exercise in
OpenMath but also the text. This is possible because,
in general, mathematics exercises are built from a well
defined and relatively small set of words. In this paper we
give a presentation of WExEd.

I. I NTRODUCTION

The number of languages in the world is extremely
large. This implies that publishers or authors of exercises
in a certain language can only use these exercises in the
countries where this language is spoken. If the exercises
could be automatically translated to different languages,
then a publisher could extend his scope dramatically.

Automatically translating exercises is hard because
of large lexicons and complex grammars. It becomes
less hard when the exercises are constructed within a
well defined context from only a small and specific
part of a language’s lexicon. In general, this is the case
for mathematics exercises, which can be as simple as
”Calculate the derivative ofsin(x)”, but also the words
from more advanced exercises may come from a rather
small and specific set of the language’s lexicon.

OpenMath [1] is an emerging standard for represent-
ing the semantics of mathematical objects in XML. It
allows mathematical objects to be exchanged between
computer programs, stored in databases or published
on the worldwide web. Each mathematical symbol (e.g.
cos) has its own OpenMath representation and Open-

Math representations are grouped in so-called Content
Dictionaries (CD’s). Every combination of mathematical
symbols can be written as one OpenMath object. By
ways of illustration, the OpenMath representation of
cos(1/x) can be seen below. Note that the mathematical
symbol ”cosine” has the OpenMath representation ”cos”,
which is in the CD ”transc1” on transcendental functions.

<OMOBJ>
<OMA>

<OMS cd="transc1" name="cos"/>
<OMA>

<OMS cd="arith1" name="divide"/>
<OMI>1</OMI>
<OMV name="x"/>

</OMA>
</OMA>

</OMOBJ>

WebALT (Web Advanced Learning Technologies), an e-
learning project funded by the EU, uses OpenMath to
automatically translate mathematics exercises into natu-
ral languages. To do so, not only mathematics is encoded
in OpenMath, but also text so that every sentence in
the exercise can be written as one OpenMath object. To
encode text in mathematics exercises in OpenMath, a
mathematical lexicon and OpenMath representations for
all words in this lexicon were created within WebALT. In
order to translate the OpenMath object corresponding to
a sentence into some natural language, grammar genera-
tion rules corresponding to the newly created OpenMath
representations were formulated and an existing gram-
mar formalism was integrated. The tool that does these
automatical translations will be further described in the
following section.

For creating and editing interactive multilingual math-



ematics exercises we developed the editor WExEd -
WebALT Exercise Editor. Exercises created with this
editor can be automatically translated to various natural
languages and can be made interactive. The latter is
done by making use of, for example, random variables
and connecting with a Computer Algebra System (CAS)
such as Mathematica [2] or Maple [3]. With random
variables, a student can solve multiple instances of the
same exercise and with the connection with a CAS,
the student’s answer can be interpreted and verified.
Because of the capability of reading and understanding
the student’s answer, WExEd can prompt the student
with a following exercise or task depending on the
student’s answer.

In this document we regularly speak aboutsentences
or exercise sentences. By this we mean sentences in
an exercise such as e.g. the problem statement or the
predefined answers in a multiple choice exercise.

In this document we describe WExEd in Sections
II , III and IV; in Section II we indicate the software
WExEd makes use of, in SectionIII we describe its
functionality and in SectionIV we give the current status.
Finally, in SectionV we give the description of a WExEd
demonstration.

II. SOFTWARE COMPONENTS INCLUDED INWEXED

The components developed within WebALT that are
integrated with WExEd are described in SectionII-A
and II-B. In SectionII-C we describe tools developed
by Technische Universiteit Eindhoven that are integrated
with WExEd.

A. TextMathEditor

The TextMathEditor is a Java application that is de-
veloped for WebALT by Maths for More [7]. With this
editor, one can create and edit multilingual mathematics
sentences. These sentences are encoded as a single
OpenMath object, i.e. both mathematics and text are
encoded in OpenMath, where the text must follow a
restricted grammar. Such a grammar defines sentence
constructs that have a corresponding OpenMath repre-
sentation in such a way that they can be automatically
translated to various natural languages. The editor stores
the OpenMath representation of the created sentence,
with natural language generation hints as (OpenMath-
defined) attributes.

When a user (e.g. an author) creates an exercise
sentence, all possible words with which he can start the
sentence are shown to him (Fig.1).

Fig. 1. TextMathEditor: a user can choose a verb to start with.

From then on, the user is given the possible
words/mathematical objects with which his sentence
might be continued (Fig.2).

The output of the TextMathEditor is an OpenMath
object. Suppose that the user created the sentence ”Cal-
culate thegcd of 18 and 24”. Then the output of the
TextMathEditor is as follows.

<OMOBJ>
<OMATTR>

<OMATP>
<OMS cd="nlg" name="mood"/>
<OMS cd="nlg" name="imperative"/>
<OMS cd="nlg" name="tense"/>
<OMS cd="nlg" name="present"/>
<OMS cd="nlg" name="directive"/>
<OMS cd="nlg" name="calculate"/>

</OMATP>
<OMA>

<OMS cd="arith1" name="gcd"/>
<OMATTR>

<OMATP>
<OMS cd="nlg" name="render"/>
<OMS cd="nlg" name="formula"/>

</OMATP>
<OMI>18</OMI>

</OMATTR>
<OMATTR>

<OMATP>
<OMS cd="nlg" name="render"/>
<OMS cd="nlg" name="formula"/>

</OMATP>
<OMI>24</OMI>

</OMATTR>
</OMA>

</OMATTR>
</OMOBJ>



Fig. 2. TextMathEditor: a user can choose the word or mathematical
object to continue.

The TextMathEditor offers additional functionalities:
• Completion grammar: the editor displays the different

ways that a sentence may end. This is illustrated at the
right hand side of the ovals in Figs.1 and2.

• Error highlighting: highlights at which part of the sen-
tence there is an error.

The TextMathEditor is developed in such a way that the user
can choose the language in which to edit the exercise sentence.

B. Natural Language Generator
The Natural Language Generator is being developed for

WebALT by Lauri Carlson and his team at the University of
Helsinki [5]. It makes use of the Grammatical Framework
(GF) [6] which has been developed at Chalmers university
(Gothenburg) by Aarne Ranta. The GF grammar environment
and compiler have been implemented in Haskell. There is
support for a Java runtime engine.

The Natural Language Generator generates natural language
for mathematics sentences which are encoded in OpenMath.

Therefore, the input of the generator is an OpenMath object
representing the sentence together with a set of natural lan-
guage generation hints (the output of the TextMathEditor). The
output of the generator is the natural language rendering of
the given sentence. The target languages for WebALT include
English, Finnish, Swedish, French, Italian, Spanish, Catalan,
Dutch and German.
Let us illustrate the Natural Language Generator. Suppose that
the input of the Natural Language Generator is the OpenMath
object illustrated above. The language generation hints say
that the mood is ”imperative”, the tense is ”present” and the
main directive is ”calculate”. We also see that the mathematical
symbol ”gcd” is rendered as text (this means that the symbol
”gcd” is verbalized) and the integers 18 and 24 should be
rendered as a formula (if not, the Natural Language Generator
would generate ”eighteen” and ”twentyfour” respectively in
English). This leads to the following output (given that the
Natural Language Generator translates to English).

”Calculate the greatest common divisor of 18 and 24.”

C. Answer Processing Tools

When a student gives an answer to an exercise, he/she is
presented with a mathematics editor that outputs an OpenMath
object; the answer of the student is presented to the system in
OpenMath format. To verify whether the student’s answer is
correct, e.g. whether the answer is equal to the correct answer
as predefined by the author of the exercise, the answer has to
be sent and processed by a CAS. Because a CAS cannot read
OpenMath, the OpenMath should be translated into something
that the CAS can read, e.g. the CAS’ own language. This
translation is done by so-calledphrasebooks.

Technische Universiteit Eindhoven developed phrasebooks
for various CAS’s like Mathematica, Maxima, Wiris and
Maple. WExEd uses these phrasebooks to translate the stu-
dent’s OpenMath answer to something the specified CAS can
read. After the answer processing by the CAS, the result is
translated back to OpenMath by the phrasebooks.

We note that phrasebooks are not only used by WExEd
to process the student’s answer but also to generate e.g. the
values of random variables or mathematical expressions.

III. F UNCTIONALITIES OF WEXED

The formal language underlying WExEd is the LeActive-
Math Exercise Language [8] which is a collection of XML
tags together with the restrictions imposed on their use. This
language is such that exercises are:

• Interactive: have means of exchanging information with
the student by being able to read the student’s answer
and to give feedback and/or hints.

• Automatized: have means of checking whether the stu-
dent gives the correct answer by connecting for example
to a CAS. The CAS can calculate the correct answer
and subsequently compare the student’s answer with the
correct answer.



• Adaptive: takes appropriate action depending on its
knowledge of the student and/or the student’s answer to a
particular question; exercises are made up ofinteractions
which consist of information given to the student (e.g.
a question) on the one hand and information provided
by the student (e.g. an answer to that question) on the
other hand. Depending on the student’s answer he/she is
directed to a following interaction (which could be the
same question, a question that will teach the student how
to solve the previous question, a new question, feedback,
etc.).

• Reusable: (random) variables can be defined in an ex-
ercise so that students can do multiple instances of the
same exercise.

The exercise language, as any XML-language, is extensible
in the sense that new tags can be added at any moment to
facilitate new features.

WExEd supports multiple choice exercises and open exer-
cises. To create multilingual exercises, the exercise author is
presented with the TextMathEditor every time the input of a
sentence is required (e.g. the exercise problem statement, the
choices in a multiple choice exercise, feedback or hints). In
this way, the exercise merely consists of OpenMath objects
that can be translated to some natural language by the Natural
Language Generator.

The editor is integrated with an exercise repository (an
XML database containing interactive exercises) and a presen-
tation layer; exercises in the repository can be played with the
MathDox player developed by RIACA [9]. Before an exercise
can be actually played, the exercise containing only OpenMath
objects should be translated to some natural language. This
is done by sending the exercise to the Natural Language
Generator. The resulting exercise contains both mathematics
(as OpenMath objects) and natural language (in the language
predefined by the user).

The software developed is based on free software, namely
on the XML database eXist [10] and the Orbeon Presentation-
Server [11] which handles the presentation.

IV. CURRENT STATUS WEXED

WExEd is still under development, which means that not
all functionality is implemented yet. At this moment, the
following features still need to be worked on:
• (Random) variables: an author cannot yet set variables

for an exercise using the editor. At the moment, this is
only possible by editing the source code of the exercise.

• Elaborate GF grammar: the GF grammar currently used
in the TextMathEditor is a very simple, provisional, one.
This means that the set of multilingual sentences that
can be edited with the TextMathEditor is very limited;
the author can only choose from a relatively small set of
words. A more complex GF grammar is being developed.

V. DEMONSTRATION

In the following sections we describe a software demon-
stration of WExEd, as to be given at WebALT2006 [4], the

first WebALT conference and exhibition.

During the demonstration we will navigate through the
exercise repository surrounding WExEd to demonstrate the
nested structure of folders and exercise files.

The demonstration is divided into the following three parts.
In the first part, an exercise is created with the editor WExEd
and played in various languages. In the second and the third
part, we will play exercises that were created by editing the
source code. This showcases the advanced future functionali-
ties of WExEd.

A. Create and Play New Exercise

In this part, the functionality of WExEd and the
TextMathEditor is demonstrated by creating a multilingual
exercise with WExEd. We explain this part step by step and
illustrate it with various screenshots.

1) We first create a new, empty, exercise in the exercise
repository surrounding WExEd (Fig.3).

Fig. 3. WExEd: an empty exercise.

2) The exercise is opened and we choose to edit it. The
editor now shows all existing interactions which is
only one for an empty exercise; the default interaction
question(Fig. 4).



Fig. 4. WExEd: the default interaction ”question”.

3) We choose to edit this interaction.
4) We write the exercise problem statement using the

TextMathEditor (Fig.5, note that on the background
the empty fields of the multiple choice exercise can be
seen). This makes the exercise multilingual.

Fig. 5. WExEd: using the TextMathEditor to create the question.

The exercise we create is a multiple choice exercise and
a student can be directed to different interactions for ev-
ery choice. If the student answers correctly (incorrectly)
then we want to send him to the ”correct” (”incorrect”)
interaction. For this, we create new interactions (remem-
ber that we now only have thequestioninteraction), see
Fig. 6.

Fig. 6. WExEd: creating new interactions.

We fill in the various choices using the TextMathEditor
and connect a different interaction to every choice (Fig.
7).

Fig. 7. WExEd: linking interactions to the multiple choices.

5) We then play the multiple choice exercise in multiple
languages (Fig.8).



Fig. 8. WExEd: playing the multiple choice exercise.

6) We edit the exercise to make it an open exercise, which
is done by changing the type of answer (Fig.9).

Fig. 9. WExEd: the open exercise.

Using the WIRIS math editor [7], we insert a query that
determines the correct answer to this open exercise (Fig.
10).

Fig. 10. WExEd: inserting a query and linking connections.

The student can give a correct or an incorrect answer to
the open exercise. We connect two different interactions
to these two scenarios (see Fig.10).

7) The open exercise is played in multiple languages (Figs.
11 and12).

Fig. 11. WExEd: playing the open exercise.



Fig. 12. WExEd: feedback to student’s answer.

B. Demonstrate and Play Existing Advanced NL Exer-
cise

In this part, the functionality of the Natural Language
Generator and the future functionality of the TextMathEditor
are demonstrated. This is done in the following way:

1) We start with the exercise created in the first part of the
demonstration.

2) Before the conference, we change this exercise by
source code editing. We only change the wording of
the exercise problem statement and possibly the query
defining the answer so that as a result, the exercise
contains natural language that cannot be edited with the
TextMathEditor but can be translated with the Natural
Language Generator.

3) The exercise is played in multiple languages (at least
2).

C. Demonstrate and Play Complex Existing Advanced
NL Exercise

In this last part, the richness of the LeActiveMath Exercise
Language and the future functionality of WExEd are demon-
strated. This is done in the following way:

1) Before the conference, we created an advanced and
interactive exercise by editing the source code. The exer-
cise will showcase future functionalities of WExEd, like
random variables, media items, etc. to make the exercise
richer. An example of such an exercise is one in which
the student is asked to do a differentiation. If the student
gives an incorrect answer then he/she is guided through
the exercise step by step by many different interactions
until he/she can answer the original question.

2) The exercise is played in multiple languages (at least
2).

VI. F INAL REMARKS

In this document we described WExEd, the WebALT Exer-
cise Editor with which interactive multilingual exercises can

be created and edited, and software integrated with WExEd.
As mentioned before, this is software which is not yet finished.
It will be further developed since the WebALT project takes
another year.

REFERENCES

[1] http://www.openmath.org/
[2] http://www.wolfram.com/
[3] http://www.maplesoft.com/
[4] http://webalt.math.helsinki.fi/webalt2006/
[5] http://www.rosetta.helsinki.fi/english/index.htm
[6] http://www.cs.chalmers.se/ aarne/GF/
[7] http://www.mathsformore.com/
[8] http://www.leactivemath.org/
[9] http://www.riaca.win.tue.nl/
[10] http://exist.sourceforge.net/
[11] http://www.orbeon.com/


