Interactive Learning and Mathematical
Calculus*

Arjeh M. Cohen, Hans Cuypers, Dorina Jibetean, and Mark Spanbroek

Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. A variety of problems in mathematical calculus can be solved
by recursively applying a finite number of rules. Often, a generic solv-
ing strategy can be extracted and an interactive exercise system that
emulates a tutor can be implemented.

In this paper we show how software developed by us can be used to
realize this interactivity. In particular, an implementation of a generic ex-
ercise for computing the derivative of elementary functions is presented.

1 Introduction

This paper deals with mathematical interactive learning. In most implementa-
tions of multi-step exercises for interactive learning the exercises are completely
authored for each instance of the problem. Here we discuss an implementa-
tion of generic exercises for specific mathematical problems. This means that
the exercise system provided will depend on the type of problem and not on
the particular instance of the problem. In our example, the generic problem is
computing derivatives of elementary functions while a particular instance of the
problem is computing the derivative of x — x* + 3. (From here on, we shall omit
the binding operation ‘z —’ when referring to a function in x.)

For the design of automated exercises we use mathematical knowledge com-
ing from two sources. Firstly, many problems in mathematical calculus can be
solved by applying recursively a finite number of rules. The rules used for solving
mathematical problems in a particular domain will be called domain rules. In
our example, these will be the differentiation rules of composed functions (sum,
product, quotient, chain rule) and the formulas for derivation of elementary
non-composed functions (for instance, the derivative of sin equals cos).

Secondly, we need information on the particular instance of the problem, like
the type of mathematical object we deal with and its definition. This information
can be immediately deduced from its OpenMath [10] representation and it is
typically sufficient to infer the domain rule(s) to be used for solving the problem
in this particular instance. In fact, what we need is the map assigning to a
mathematical (OpenMath) object the domain rule which needs to be applied.
We will call this map a domain reasoner.

* Work carried out within the LeActiveMath project.

, pp. 330-3Z3 2005.
© Springer-Verlag Berlin Heidelberg

Interactive Learning and Mathematical Calculus 331

In an interactive exercise, the student is required to solve a problem. Our strat-
egy is to decompose the original problem into simpler sub-problems, so as to ob-
tain a multi-step exercise. An interactive exercise can be seen as a collection of
problems together with the order in which they are executed. An exercise always
has a first step, corresponding to the original question. According to the student’s
answer and a predefined strategy, the next step is selected. In this way, the student
is guided in solving the initial question. The correctness of the student’s answer is
evaluated by the use of a computer algebra system (CAS) connected to the exer-
cise. There are quite a few interactive exercise systems which check automatically
the correctness of the student’s answer (such as [, [7], [5]) but they are not as
concerned with tutoring. These exercises consist of a single evaluation step. Some
systems (like [7]) also provide automatically generated hints.

The novelty of our approach is that we produce generic exercises for certain
mathematical problems by using the semantic information encoded in the Open-
Math expression. Our approach can be applied to any mathematical problem for
which a complete set of domain rules and a map from the OpenMath expression
to the set of domain rules can be defined. We believe that this is possible for
many problems in mathematical calculus.

The structure of the paper is as follows. In section] we present our general
approach to interactive exercises, exemplified for the computation of derivatives.
It shows how we use the domain rules and the OpenMath tree structure of the
instance to generate the interactive exercise. Sections Bl and H] contain details on
the design of the interactive exercises, respectively on the set-up of the system
running the exercise and some of the tools developed for this type of interactive
exercise. In Section Bl we show our implementation for computing the derivative
of an arbitrary (differentiable) univariate function. Section [l discusses the ap-
plicability of the method to other problems in mathematical calculus. Section [1
presents ways to enhance the interactive exercise into detecting misconceptions
of the student and other errors. Conclusions are presented in Section

2 Interactive Exercises

Let us analyze the problem of computing the inverse of a given matrix using
Cramer’s rule. Here, a possible sub-problem is computing the determinant of
the matrix. This helps for example to determine whether the inverse exists or
not. Another sub-problem involves computing the elements of the inverse using
Cramer’s rule, as the fraction of two determinants. This exercise will consist of
several steps, namely the original question, the problem of computing the deter-
minant of a matrix, the problem of computing an element of the inverse (repeated
n? times, where n is the size of the matrix) and, at last, an acknowledgment of
the result.

There are however more complicated examples of calculus problems in which,
although there is a finite number of procedures that can be applied, the order in
which they are executed is not the same for any instance of the problem. In case
few alternatives are possible, an interactive exercise should allow the students
to choose the course of action they want to pursue.

332 A .M. Cohen et al.

The choice of the rules to apply depends in general on the particular in-
stance of the problem. For example, in differentiating sin(z? + 1) one applies
the chain rule and the elementary differentiation rules for sin and polynomials,
while differentiating x+log(x) requires applying the sum rule and the elementary
differentiation rules for the logarithm and the identity.

Still, a generic exercise can be implemented in such cases. Using the Open-
Math tree structure of the expression of the function, the system can recog-
nize the rule to be applied. Here we concentrate on derivatives, although in
Section B we discuss the applicability of the method to other fields in mathe-
matical calculus.

Derivatives are the case study considered by the European project LeActive-
Math [2] for interactive, user-adapted e-learning. Much of the work reported in
the present paper is carried out within the context of this project.

2.1 Derivatives

The domain rules in the case of derivatives are easy to derive. They are the
differentiation rules of composed functions and the formulas for differentiation
of elementary non-composed functions.

~ sum: (f+9)' = f' +4.
— product: (fg)' = f'g+4'f.

— quotient: (f/g)" = (f'9 —9'f)/g*

— chain rule: (fog) =(f'og)g.

— ¢ =0, where c is a constant.

— id’ = 1, where id denotes the identity function.

— elementary non-composed functions: sin’ = cos, exp’ = exp, etc.

The OpenMath expression of a function contains all necessary information for
computing the derivative of the respective function according to the above rules.
One can determine whether the elementary function is composed or not, by
the fact that a composed function has at least two OMAs in its OpenMath
expression. In case the function is composed one can easily decide which one of
the rules for composed functions needs to be applied. Let us consider for example
the OpenMath expression of sin(z? + 1).

<0M0OBJ>
<0OMA><0MS cd=’transcl’ name=’sin’/>
<OMA><OMS cd=’arithl’ name=’plus’/>
<OMA><0MS cd=’arithl’ name=’power’/>
<0OMV name=’x’/> <OMI>2</0MI>
</0MA>
<0OMI>1</0MI>
</0MA>
</0MA>
</0MOBJ>

Interactive Learning and Mathematical Calculus 333

By looking at the root operator (the first OMS) it is clear that we either need to

apply the chain rule if the function is composed or, otherwise, a differentiation

rule for elementary functions. For x+log(x) the root of the OpenMath expression

is the ’plus’ symbol which suggests applying the sum rule. In this way we define

a map matching the root of the OpenMath tree to the particular domain rule.
In Section Bl we discuss this generic exercise in greater detail.

3 The Design of an Interactive Exercise

This section explains the structure of an interactive exercise. Each exercise cor-
responds to a particular area in mathematical calculus. Specifically, we will have
one interactive exercise for computing derivatives, one for computing limits, etc.
Such an exercise is applicable to any instance of the problem (under some general
assumptions) and it is in this sense generic.

We decompose a given problem into several sub-problems. Then we construct
a directed graph having a source (start node) and a sink (end node). Each node
of the graph corresponds to a sub-problem. Each arc shows a possible succession
from one sub-problem to another one. The graph is constructed in such a way
that each path from the source to the sink is a possible solution of the original
problem. Therefore, we call the graph a solution graph and a path from the
source to the sink a solution-path.

Each sub-problem has a text field, containing for example a question, and a
user-input field, in which the student types the answer. The only exception is
the sink which contains only the text field, to acknowledge the result. According
to the input of the user or to the state in which the system finds itself, an arc is
chosen and implicitly the next step/sub-problem to be solved.

An abstract solution graph is depicted in Figure [l Each node represents a
subproblem. The source, denoted by 1 contains the original question. In case
condition cl is satisfied, the student is directed to a a different question 2. In
case another condition is satisfied, c1’, the student is redirected for example to 1.
In case neither ¢l nor cl’ are satisfied, the student is directed to the sink, rep-
resented by n.

cl' not(c2)

cl c2

1 2 F»--—>» n

not(cl and c1")

Fig.1 An abstract solution graph

The arcs leaving a node must represent exclusive conditions and must cover
all possibilities. The conditions can be imposed for example on the student input,
leading for example to a specific sub-problem if the answer to a question is correct
and to another one if the answer is incorrect. The conditions can be imposed

334 A .M. Cohen et al.

on other parameters as well, like a maximum allowed number of trials, previous
performance of the student, etc.

The solution graph is characteristic for a mathematical problem. It is de-
signed to take into consideration the domain reasoner of the problem and aspects
of a teaching methodology. There is no unique design for the solution graph of
a specific mathematical problem.

4 Implementation of the Interactive Exercises

This section explains the implementation of the interactive exercises. More de-
tails on the general set-up and tools necessary to run the interactive exercises
can be found in [6].

The exercises are implemented as a web-application. They are written in an
XML based language that offers mark-up support for interactivity enriched with
OpenMath for handling mathematics.

4.1 XML Representation of the Solution Graph

XML trees are ideal for capturing the structure of the solution graph of an
exercise. Our examples use the following principal XML tags: step, message,
userinput and choice. Each step corresponds to one sub-problem in the solu-
tion graph. The step/sub-problem has an attribute id by which it can be called.
Each step has the following components: message, userinput and choice. The
only exception is the last step, the sink, which has only message. The message
contains the text or mathematical question posed to the student. That is, for
example in FigureBl Please input a function in x whose derivative you would like
to compute. In Figure B, the user input is a text-box having the label Function.
The tag choice implements the arcs of the solution graph, and redirects to the
next step. The choice and redirect option are further explained in the following
section. The choice is hidden from the user.

4.2 Variables and Flow Control

The interactivity is catered by a Java based server (e.g. JSP [H]) which also
provides a basic programming-like language for setting and retrieving variables,
performing tests, flow control, etc. The interactivity consists of walking through
the solution graph and the exchange of information with the user. The path one
takes is determined by various parameters which can be determined by queries
but also by previously set variables.

4.3 Mathematical Queries

Mathematics is represented according to the OpenMath standard ([I0]). Open-
Math encoded objects can be displayed by browsers (through conversion to
MathML) and interpreted by computer algebra systems via OpenMath
phrasebooks. Moreover, we use here the OpenMath expression of a mathematical
object for interactivity in order to determine the domain rule to be applied (see

Sections 21 and [@).

Interactive Learning and Mathematical Calculus 335

Within the frame provided by the Java based server we construct custom
tags. Examples are provided below.

Query to a CAS. It is necessary for the automatic evaluation of the student’s
input. A standard for mathematical queries was defined by MONET (see [§]).
See also the OpenMath webpage, Software and Tools, for some implementations
of query services ([I0]).

Query to a taglib. The following queries to the OpenMath tree structure of a
mathematical expression turn out to be very useful in our interactive examples:
extraction of a node, extraction of the root (operator) of a node, navigation
in the tree (e.g., move to parent/next sibling/first child), rewriting the tree
(e.g., mathematically z + 22 equals z(z + 1), but the corresponding OpenMath-
expressions are different), keeping track of the current node (a query of the type
What is the parent of x in (14 x)?/x is ambiguous). The use of these operations
will be made clear in Section

The list of queries above is not exclusive and may need to be extended in
case an interactive exercise for a different mathematical problem is considered.

5 The Example for Computing Derivatives

We present here an implementation of a generic exercise for computing the
derivative of a function, see [B]. As a back-engine for checking the student’s
answer we use Mathematica. Expressions like (x —1)/(2? —1) and 1/(z + 1) are
therefore considered equal.

Students are allowed to choose a (univariate) function. Then they are asked
to compute the derivative. In case they give a wrong answer they are guided
through decomposing the function into simpler ones and then apply differenti-
ation rules. In this implementation the next step is determined in interaction
with the student. The student receives hints automatically, as shown in Step 3.

We present below snapshots taken while running the exercise. The exercise
consists of a finite set of interactions, one asking the student to compute the
derivative of a function, one asking the student to decompose the function, etc.
This 'modularization’ of the exercise allows us to reuse parts of the exercise.
Note that each module is largely humanly authored but that parts of it are
automatically updated by means of variables as described in Section Hl Note
that the path taken for solving the exercise is decided in interaction with the
student.

We describe below a possible scenario.

Step 1. The student introduces a function on which they want to practice. Al-
ternatively, the function can be drawn from a database or randomly drawn from
a particular class of functions such as polynomials, trigonometric, transcendental
or any composition of functions belonging to these classes.

Step 2. The student is asked to submit the elementary function that is the
derivative of the function.

336 A .M. Cohen et al.

v i zillz Bl sfo _Jalix

Elle Edit View Go Bookmarks Tools Help

@ - e - &7 (1 Q) [it Mocalnost 8080/lam-matabook/interacive_exercises/start.mb j ©eo [GL

] http:/download.i

A guided exercise.

Please input a function in x whose derivative you would like to compute.
Function :Einix~2+«]
Submit Query

[Done

Fig. 2

Lz 3 plsFuster Shalix

Fil Edit M=w Go Bookmarks Tools Help

o BOQD - x - dow @

[http:irdowrload.i

Start a new
Check the derivative. exercise

Well done!

Compute the derivative of sin(x + x?)

Derivative :Cosaex]
Submit Guery

[Dore

Fig. 3

Step 3. The student’s answer is checked by Mathematica. If the student’s
answer is not correct, they are asked to choose a differentiation rule they want
to apply. The button Hint, when pressed, displays the text: 'Use the chain rule’.
Here the word chain is determined automatically by the system by analyzing the
OpenMath expression of the function whose derivative we are computing at this
step. The system finds the rule to be applied by using the special tools described
in Section @l namely the extraction of the root operator.

Step 4. After having typed the rule, the student is redirected accordingly.

If the rule chosen by the student matches the rule corresponding to the main
operator, the system can also suggest the two functions g and h. This is not
implemented in the current version.

Step 5. The student introduces the two functions and the CAS verifies that by
composing the two, one obtains indeed the original function. If that is correct,
the student is directed to the first function and asked for its derivative. The
expression of the first child is obtained using the tools of Section Hl, namely the

Interactive Learning and Mathematical Calculus 337

_fialixh)

po— sesirile.mb j@Gu =
[} htzp:/7doanicad..

Start & new [
This is not correct! We will solve now this exercise step by exercise

step.
We need to compute the derivative of sin{x + x7)

Whal rule do you wanl Lo apply (i.e. producl, chain, sum)?

Submit Query |

Hint

=

o
Fig. 4
SC) Mosilakireron) ia)x
hle Edit View Go Bookmarks losls Help
@ -y - & 0 &) [nte Mocalhosts280/ am-matbackiinteractive_exerciac s/chait.mix M
[} htpz/rdoanicad.i
Start a new
3 exercise

The chain rule

The chain rule is (g(hix)))'=h'(x/*g' (h(x)).

Your function is sin(x + x%) . What are g and # (as functions of x
) in this case?

g i h]

Submit Query

Tans

Fig.5

navigation in the tree and the extraction of a node. Note that we reuse here the
interaction from Step 2, for a different function.

Step 6. Since the answer at Step 5 is correct, we compute the derivative of
the next sibling (reusing interaction from Steps 2 and 5). The next sibling is also
found using the tools of Section Hl

Step 7. Since the second answer is correct and there are no more siblings we
are redirected to compute the derivative of the parent (interaction of Steps 2, 5
and 6). If the answer were not correct at this point the student would have been
asked to decompose further z? + x. (Students are allowed to decompose it both
as a sum of and 22 and as a product of x and = + 1).

Note that the hint, when pressed, displays the sum rule for derivation.

Step 8. The answer is correct and this is acknowledged in the last page.

The complete solution graph of this problem is illustrated in Figure [0 In
the graph, the subproblem 1 corresponds to Figure Bl From subproblem 1 we
are always redirected to subproblem 2 which corresponds to Figure Bl Here de-

338 A .M. Cohen et al.

_fialixh)

=1 oAl | Fira o

@ g e arn b j Goo [T
[} htp/jdoanlcad.1
Start a new
Check the derivative. exercise
‘Well donel!

Compute the derivative of sin(x)
Derivalive :[Cos[x]

Subrmit Query |

Fig. 6

am- P b M
[} hip/idoanlcad.1
Start a new
Check the derivative. exercise
Well done!

Compute the derivative of x + x*

Derivative :#1
Submit Query

Fig.7

pending on the student’s answer and on previous knowledge we choose the next
step. Let us explain the arcs. C'1; is taken if the answer is incorrect and the
derivative for the children are known. Cis is taken when the answer is correct
and there is a next sibling, as it happens for example at Step 6. In this case,
the current function is also updated. Ci3 is taken if the answer is incorrect and
the derivatives of the children have not yet been computed. C14 is taken in case
the answer is correct and there is no parent of the current node as it happens in
Step 8. C15 is taken if the answer is correct, the derivatives of all children have
been computed and the current node has a parent. This situation occurs at Step
7.

The subproblem of 3 corresponds to Figure Bl The subproblem of 4 corre-
sponds to Figure Bl while subproblem 5 corresponds to a different rule. The arcs
Cs1, Cao correspond to the choice the student is making. Arc C3; corresponds to
an incorrect decomposition of the function into simpler ones, while the arc Css
corresponds to a correct decomposition. Note that if the choice is correct, the

Interactive Learning and Mathematical Calculus 339

ST
Fle Ect Ve Go Zockmarks Cocls Hep
& D G [T e ety o oA Jow @
[Faprdomnlaad.
Start a new
Compute the derivative exercise
You have scen that the derivative of sin(x) cquals cos(x) .
You have also seen that. the derivative of x +x2is 1 +2=x .
Can you compule Lhe derivalive of sin(x + %1 now?
Derivative :[z#1)Cosix2-x]
g
Fig. 8
=k
Ga - - &) [0 nepitocalnost aceoiammathk cokinteractine_exercises iralresults mb | Do G
|1 http:/ice mnload.i.
Start a new
Results exercise

Congratulaticns!!

Tndeed, the derivative of sin(x + x%) is (1 +2=x)=cos(x # (1 + X)) .

Fig.9

function we work with (the current node) is updated and takes the value of the
first child as it happens at Step 5. The sub-problem 7 corresponds to Figure Bl
Arc Cs;1 corresponds to a correct answer. In this case the function we work with

(current node) is updated to the parent. Arc Cyo corresponds to an incorrect
answer.

6 Other Applications

In this section we discuss the domain reasoners for the problem of computing
limits, respectively the problem of computing indefinite integrals of elementary
functions. Recall that the domain reasoner is the map from the mathematical
knowledge on the instance of the problem (typically available in its OpenMath
expression) to the set of domain rules.

6.1 Limits

The limit of a univariate elementary function when its argument goes to a speci-
fied value is in general obtained by taking the limits of its parts. In other words,

340 A .M. Cohen et al.

Ce q 7 C12G 2 Dcﬂ

3
C,, yw
4 5

Ca Ca

Fig. 10. solution graph for the derivative problem

taking the limit commutes with the composition of continuous functions. There
are a few exceptions: in case the result of applying the above mentioned rule is
one of the undecided cases 0°,1°°,0°°,00%,0/0,0 x 00,00 — 0o, rewriting rules

are applied.
1\ ™=
lim (—)
rz—1 \ T

which results in the undecided situation 1°°. To solve the problem we reduce it
to the undetermined case 0/0 by applying the rewriting rule

(1)1% (1)1% —logx
- =explog | — = exp)
x x 11—z

and then apply 'Hopital rule; we conclude that the original will equal

Example 1. Consider

expliMe—13 = ¢,

L’Hoépital rule says that in the undecided cases where lim f(z)/g(x) is either 0/0
or 0o/ +oo and lim f'(x)/g¢'(x) exists, we have lim f(z)/g(z) = lim f'(z)/¢' (z).
L’Hopital rule can be applied repeatedly and is equivalent to the method based
on Taylor series expansions. Other undecided cases can be reduced to the 0/0,
00/ 400 cases using rewriting rules. For example, the "power’ cases 00, 07, 1+
are rewritten using the equivalence f(x) = exp(log(f(z))) while for the 'differ-
ence’ cases oo — 0o we can use f(z) = log(exp(f(x))). However, when the expres-
sion of f(x) contains radicals, a different rewriting rule may need to be applied.

Interactive Learning and Mathematical Calculus 341

As shown by the example, lim,_,~, 2/v22 + 1, ’'Hopital’s rule occasionally fails
to yield useful results. In certain cases, the limit of a 'part’ of the function does
not exist, although the limit of the whole function exists.

Example 2. Consider
lim sin(x)-
T—00 x

In such a case the sandwich rule is applied:

1 < sin(z) sin(z) _o.

1
< — implies lim
x x T—o0 T

8

The domain rules for computing limits are the rewriting rules, ’'Hopital/ Taylor
series rule and the sandwich rule.

— PHépital rule: if lim,_,, f(z) and lim,_,, g(x) are both 0 or are both +oo
and lim f/(z)/¢' () exists, then lim,_,, f(x)/g(x) = lim,— f'(z)/g'(z).

— sandwich rule: if g(z) < f(z) < h(z), for all z in (a—€,a+¢€) (z in (M, c0),
x in (—oo, —M), when a = oo, respectively a = —oo and M > 0 large) and
lim, 4 g(z) = lim, ., h(x) = L, then lim,_, f(x) = L.

— rewriting rules: f(x) = exp(log(f(x))), f(z) = log(exp(f(x))), rewriting
rules for radicals, etc.

Computing the limit of a composed function is based on computing the limits
of its sub-functions. Again, the OpenMath expression of a function is very useful
for identifying the sub functions. Let us consider the OpenMath expression of

limg, 1 (2) = (Example [).

<0OMOBJ>
<OMA><0MS cd="1imit1" name="limit"/>
<OMI> 1 </0MI>
<0MS cd="1limit1" name="both_sides"/>
<0OMBIND><0MS cd="fns1" name="lambda"/>
<0OMBVAR><0OMV name="x"/></0MBVAR>
<OMA><0MS name=’power’ cd=’arithl’/>
<0OMA><0MS name=’divide’ cd=’arithl’/>
<0OMI>1</0MI><0MV name=’x’/>
</0MA>
<0MA><0MS name=’divide’ cd=’arithl’/>
<OMI>1</0OMI>
<0OMA><0MS name=’minus’ cd=’arithil’/>
<0OMI>1</0MI><0MV name=’x’/>
</0MA>
</0MA>
</0MA>
</0MBIND>
</0MA>
</0MOBJ>

342 A .M. Cohen et al.

As in the case of differentiation, we can start by asking the student to com-
pute the limit of the function. In case of a wrong answer we ask the student to
decompose the function. The hint is given according to the OpenMath expres-
sion of the function. By doing this recursively, at the end of this procedure we
have either computed the limit or identified the undecided case.

According to the undecided case we find, a rewriting rule (from the domain
rule) is applied in order to bring the function to a case in which 'Hépital can
be applied as described in Section

As remarked in Example Bl it is possible that evaluating a sub-function at
some point we obtain a whole ’interval’. In this case, the rule (of the domain
rule) to be applied is the sandwich rule.

In general the mathematical knowledge contained in the OpenMath expres-
sion is sufficient for defining the domain reasoner. An exception is the compu-
tation of limits in which knowledge on the range of the function is necessary for
applying the sandwich rule.

6.2 Indefinite Integrals

Computing indefinite integrals (also called primitives) of elementary functions
is in general much harder than computing derivatives or even limits. However a
lot of progress has been made in the area of symbolic integration (see e.g. [1])
and many computer algebra systems have an integrated module for symbolic
integration. Powerful algorithms have been developed which compute the indef-
inite integral of an elementary function in case it exists or prove that there is no
elementary primitive.

Nevertheless our problem is in some sense simpler. We do not want to com-
pute the primitive of a given function or to establish whether the primitive
exists. To make sure that a primitive of f exists, we will randomly generate an
elementary function F' and compute its derivative f. Knowing F', we can guide
the student through finding F' as shown below.

Ezample 3. Consider the function f: R — R given by f(z) = 1/(1 + 2x + 22?)
and a primitive F'(z) = arctan(z/(x + 1)) of it. From the OpenMath expression
of F(x) we see that F equals arctan(y) for some function y of . Knowing that
(arctan(y))’ = y'/(y? + 1), a helpful suggestion to the student is:

Can you write the function f as y’/(y?+1) for a suitably chosen function
y of z?

Note that the answer is not unique. Besides F', other primitives of f are

(1/2)'
1+ (1/z)2

€T

1
Fy(xz) = —arctan (ac +) obtained by rewriting f(z) as —

and

(22 + 1)/

Fy(z) = — arctan(1 + 2z) obtained by rewriting f(z) as [Nyl

Interactive Learning and Mathematical Calculus 343

All answers are correct and it can be checked that F', F; and F5 all differ from
each other by a constant.

There are several differences between our problem, which is teaching rules for
computing integrals and the problem of computing integrals using state-of-the-
art algorithms for symbolic integration described for example in [I]. We know
the answer and want to deduce the steps that were taken in order to solve the
problem. In some cases, as shown in Example Bl this is trivial. However other
rules, like the integration by parts, are hard to recognize. Also, the algorithms
described in [1] can be very different from the methods taught in schools, like
the sum, chain, partial fractions, integration by parts rules and the elementary
rules for integration.

The first implementations of algorithms for computing indefinite integrals are
closer to the methods taught in school. To make our job easier, we can simply take
over the domain reasoner of such a computer algebra system, for example the one
described in [d]. There, the domain reasoner is based on ’pattern recognition’ of
a sub-function like sin, exp, etc., which is trivial from the OpenMath expression
of the given function and uses heuristics for determining the rule to be applied.
A multi-step interactive exercise for symbolic integration will have to implement
the domain reasoner of a computer algebra system, for example of [9].

The alternative for us would be to write a domain reasoner ourselves, using
the knowledge we have on the primitive F' and on the function f, as suggested
in Example Bl However we do not pursue this idea here.

7 Enhanced Interactive Exercises

The work presented in the previous sections can be easily extended in a few
directions.

7.1 Detecting Errors and Misconceptions

A common error the student can make is forgetting brackets. If the number of
opened brackets does not equal the number of closed brackets, the error can be
detected at the moment of parsing the answer to OpenMath. Otherwise, for-
gotten brackets can still be detected in simple expressions, by extensive trials,
although that would involve a number of computations which increases expo-
nentially with the size of the expression.

Another interesting way of using the computer power for educational pur-
poses, namely for detecting the misconceptions of the student, is by introducing
the so-called buggy rules. Experienced teachers know what are the most fre-
quent errors that a student makes when solving a particular type of problem.
For example, a common mistake (buggy rule) when computing derivatives is
(z™)" = 2", This knowledge can be formalized and the system can compare
the student’s answer against a list of buggy rules, in case the answer is not cor-
rect. In this way, the computer algebra system can make a guess as to what the
student did wrong.

344 A .M. Cohen et al.

7.2 Simplifications

The student may often give a correct result which is however not simplified, as in
(x —1)/(z* — 1). Most computer algebra systems have implemented simplifica-
tion procedures to bring an expression to a normal form. At the moment we only
distinguish between two cases, namely between a correct answer and a wrong
answer. For pedagogical purposes, a third case would be interesting, namely ’cor-
rect but not fully simplified’. For this we would have to compare the student’s
answer with the normal form(s) available in the computer algebra system. How-
ever, this is a tricky issue since a normal form is not uniquely defined (e.g.,
both forms z(z + 1) and 22 + are acceptable). Also different computer algebra
systems will have different implementations of simplification procedures, leading
to different normal forms. Nevertheless, computer algebra systems often have a
complexity measure of an expression which may be used to detect very elaborate
answers.

7.3 Solution Generators

In this paper we have proposed implementing the domain reasoner for each
particular problem in order to identify a possible next step. An alternative would
be to use already existing tools, such as [2], which generate a detailed solution
for a particular instance of the problem. For example [I2] can display the solution
of practically any instance of a variety of calculus problems among which we
find computing derivatives and computing limits. This is achieved by using the
domain reasoner implemented in Mathematica. The fact that [I2] is an extension
of Mathematica is in our view a disadvantage since this may restrict its use. At
the moment the only interactivity [[2] provides is in choosing the problem to be
solved, hence it cannot be directly applied for interactive exercises. However, it
is an innovative use of computer algebra systems and it may turn out to be very
useful for interactive exercises.

8 Conclusion

The paper describes a method for implementing multi-step interactive exercises
for certain problems in mathematical calculus. This is possible by exploiting the
mathematical knowledge available in the OpenMath expression of the mathe-
matical objects we deal with, by deriving the domain rules corresponding to the
problem and constructing a domain reasoner for solving the problem.

As a first approximation, in the case of differentiation, the necessary prop-
erties of the mathematical object are deducible from its OpenMath expression.
However, we have noticed already an exception in Example Pl where extra knowl-
edge (about bounds of the function) is necessary in order to be able to compute
certain limits.

Our set-up for the particular case of computing derivatives for functions is a
first attempt, made possible within the LeActiveMath project [2].

Interactive Learning and Mathematical Calculus 345

References

10.
11.

12.

. M. Bronstein, Symbolic Integration I, Transcendental Functions, Springer,
1997.

LeActiveMath, http://wuw.leactivemath.org.

LeActiveMath exercises, http://www.riaca.win.tue.nl:8080/leam-exercises.
The J2EE Trademarked 1.4 Tutorial, http://java.sun.com/j2ee/1.4/docs/tutorial/
doc/index.html.

MapleTA, http://www.maplesoft.com/products/mapleta/index.aspx.

A.M. Cohen, H. Cuypers, E. Reinaldo Barreiro, MathDox: Mathematical Doc-
uments on the Web, Contribution to OMDoc book, http://www.win.tue.nl/
“hansc/mathdox3.pdf

Metric, Imperial College London, http://metric.ma.imperial.ac.uk/new/html/
index.html.

Monet (Mathematics on net), http://monet.nag.co.uk/cocoon/monet/
index.html.

Joel Moses, Symbolic integration: the stormy decade, http://portal.acm.org/
citation.cfm?id=362651

OpenMath, http://www.openmath.org/cocoon/openmath/index.html.

Stack (System for Teaching and Assessment using a Computer algebra Kernel),
http://eeeb95.bham.ac.uk/"stack/index.html.

webSolutions Detailed and Dynamic Mathematical Solutions, http://
www.webmath.ch/.

	Introduction
	Interactive Exercises
	Derivatives

	The Design of an Interactive Exercise
	Implementation of the Interactive Exercises
	XML Representation of the Solution Graph
	Variables and Flow Control
	Mathematical Queries

	The Example for Computing Derivatives
	Other Applications
	Limits
	Indefinite Integrals

	Enhanced Interactive Exercises
	Detecting Errors and Misconceptions
	Simplifications
	Solution Generators

	Conclusion

