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Abstract. New technologies such as XML, XSL and both MATHML and Open-
Math make it possible to bring mathematics to the Internet. Indeed, Open-
Math, a markup language for mathematical content, and OMDOC, its exten-
sion to mathematical documents, open a way of communicating mathematics
between computers, between software applications and over the Internet with-
out losing information. In this paper we describe the latest applications of
OpenMath related technologies for Interactive Mathematical Documents. As
an example we describe the way we incorporate these new technologies in a
new version of Algebra Interactive, an interactive course on first and second
year university algebra.

1 Introduction

In Algebra Interactive ”version I” [10] our purposes were to use emerg-
ing technologies of that era (the mid nineties) to bring together elements
of playfullness, visualization and interactivity into teaching material in
such a way that students would be exposed to the power of abstract alge-
bra by experimenting with examples and applications closer in spirit to
the ways of a working mathematician than those in classical textbooks.
At that time, HTML and JAVA were the prime technological resources
available to produce and enliven hypertext. In the meantime, the break-
through of the Internet brought forward the concept of a global village of
remote resources that can also be used for doing mathematics. To bring
mathematics to the Internet, new markup languages and related exten-
sions such as XML, XSL and both MATHML and OpenMath are already
in an advanced stage of development and are gaining ground rapidly.
The experience with Algebra Interactive I on the one hand and the new
technologies evolving rapidly on the other hand, has helped shape the
ideas for this paper and for the forthcoming second version of Algebra
Interactive. In rough terms we are approaching the stage where ‘What
you want is what you get’! is the philosophy underlying the interactive
document. How we as authors envision to achieve this goal as best as
possible is the topic of this paper. Specifically, the ‘you’ in the above
quote refers to tutors and students. To satisfy the requirements of these
user groups, the electronic document has to take into account flexibility
of presentation, easy access of back-engines, indexing, search and test

1 We first heard this from Gaston Gonnet.
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facilities. All of this can be accomplished by exploiting OpenMath and
OMDoC in combination with server side programming.

The structure of this paper is as follows. Section 2 discusses Open-
Math, MATHML and related technologies. Section 3 is concerned with
the browser-webserver architecture. Finally, we describe the application
of these ideas in Algebra Interactive in Section 4.

2 OpenMath, MathML and related technologies

A lot of the mathematics online has until recently been presented using
the de-facto standard IMTEX or TEX despite the well known limitations it
has in handling interactivity. Documents generated by transforming TEX
sources to various flavors of HTML support only cross-linking mechanisms
and produce, in most cases, images for formulae. More adventurous au-
thors have included interactivity in the form of plugins or JAVA applets
in their pages. In the meantime, the World Wide Web Consortium has
published the recommandation for the Mathematical Markup Language
(MATHML) for describing mathematical notation and capturing both
its structure and content [2]. Similarly, the OpenMath Society has en-
dorsed a newer version of the OpenMath standard for representing the
semantics of mathematical objects and facilitating the exchange between
computer programs, the storage in knowledge bases, and the electronic
publication of mathematics [15,11,9].

2.1 OpenMath and MathML

By enabling mathematics to be served, received, and processed electron-
ically, both MATHML and OpenMath aim at enhancing mathematical
communication on the World Wide Web just as hypertext has done for
text. The parallel evolution and definition of these predominant markup
languages for mathematics [7] resulted in an ideal separation of comple-
mentary roles: MATHML presentation can be used for presenting mathe-
matical content written in OpenMath. The major observation underlying
this state of affairs is that mathematics and its presentation should not
be viewed as one and the same thing. While the meaning of a mathemat-
ical object should be uniquely defined and understood, its visualization
and rendering depends on time and place, more precisely it depends on
the context and on the style preferences of the author or reader.

In order to represent mathematical content it is crucial that a mech-
anism is established to allow for the introduction of new concepts, since
this activity is at the core of mathematics. The OpenMath representation
of mathematics relies for this task on a small set of “expression trees”
constructors (application, binding, attribution and error), on some ba-
sic objects (bytearrays, strings, integers, IEEE floats, variables), and on
the usage of symbols defined in Content Dictionaries (CDs for short).
These are publicly available collections of mathematical definitions, a
sort of XML dictionary of mathematics. The interested reader may find
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the standard documents and the collection of public Content Dictionaries
from [20].

OpenMath abstract objects representing mathematical concepts are
obtained for instance by using the application constructor as in the
following example. The algebraic structure consisting of the polynomial
ring Z,[X] is representable as OpenMath abstract object like:

application(polyr:PolynomialRingR, application(setname2:Zm, p), x) (1)

In this object, the OpenMath symbols polyr:PolynomialRingR and
setname?2:Zm identify the polynomial ring structure over the integers
modulo p. More precisely, they are the symbols called PolynomialRingR
and Zm defined in the CDs polyr and setname2, respectively. As men-
tioned earlier, OpenMath Content Dictionaries collect and provide defi-
nitions of mathematical notions for usage within OpenMath applications.
The official repository for CDs is [20].

As further example consider a polynomial in this ring, say f =
X3 — X + 1. It can be represented in several ways as an abstract Open-
Math object, for instance as recursive polynomials by using the symbol
polyr:PolynomialR. As with all OpenMath objects, it can be encoded
in a human-readable format using XML [14] and stored as:

<0OMOBJ><0OMA><0OMS cd="polyr" name="PolynomialR"/>

<OMA><OMS cd="polyr" name="PolynomialRingR"/>
<OMA><0OMS cd="setname2" name="Zm"/>
<0MV name="p">
</0MA>
<O0MV name="X"/>
</0MA>
<OMA><OMS cd="polyr" name="PolyRrep"/>
<OMV name="X"/>
<OMA><0OMS cd="polyr" name="monomial"/>
<OMI> 3 </OMI><OMI> 1 </OMI>
</0MA>
<OMA><0OMS cd="polyr" name="monomial"/>
<OMI> 1 </OMI><OMI> -1 </OMI>
</0MA>
<OMA><0OMS cd="polyr" name="monomial"/>
<OMI> 0 </OMI><OMI> 1 </OMI>
</0MA>
</0MA>
</0MA>
</0MOBJ>

Reading from the encoding, the outermost XML element <OMOBJ>
encloses nested OpenMath application objects, appearing within the el-
ement <OMA>, which are built using OpenMath symbols (<OMS>), Open-
Math variables (<OMV>), and integers (<OMI>). Notice that the applica-
tion object highlighted by the box is essentially the XML encoding of the
polynomial ring expressed abstractly in (1).

While OpenMath objects are built using symbols defined in some
Content Dictionary that is part of an ever growing collection of Con-
tent Dictionaries, MATHML makes explicit a relatively small number of
commonplace mathematical constructs chosen within the K-12 realm of
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applications and, in addition, it provides the content symbol (csymbol)
to introduce a new symbol whose semantics is not part of the core con-
tent elements of MATHML. In particular, such an external definition
may reside in an OpenMath Content Dictionary as in the example:

<apply>
<csymbol encoding="OpenMath"
definitionURL="http://www.openmath.org/cd/polyr.ocd">
PolynomialR
</csymbol>

<apply>
<csymbol encoding="OpenMath"
definitionURL="http://wuw.openmath.org/cd/setname2.o0cd">
Zm
</csymbol>
<ci>p</ci>
</apply>
<ci>X</ci>
</apply>

MATHML supports an extensive library of presentation symbols to
accomodate even the fanciest notation used by mathematicians. In this
respect, MATHML (presentation) is the preferred choice for rendering
mathematical content and as such it is to be expected that it will be
natively understood by future browsers (e.g. Mozilla already ships with
MATHML) and editors.

2.2 OpenMath and OpenMath Documents

Communication of mathematics is however more involved than just an
exchange of stand-alone mathematical notions or objects. Often it is
crucial to be able to relate concepts, to link definitions to theorems and
in general to convey an entire mathematical theory. In principle, one
could use OpenMath (attribution) objects to represent this type of in-
formation, in a way similar to the way in which Content Dictionaries
can be expressed as OpenMath objects. However, the resulting repre-
sentation would be quite unnatural and cumbersome to say the least.
The OpenMath Document Specification (OMDOC) [18], currently under
development, is an XML document type definition that can be used to
represent general mathematical knowledge as it appears in lecture notes
and in scientific articles, but also in mathematical software like algebraic
specification modules or library files of a proof checker. It is being used
as source format for the next release of Algebra Interactive [10], an inter-
active textbook used in teaching first and second year university algebra,
see Section 4. OpenMath Documents are moreover intended as the input
format for MBase [19], a knowledge base of mathematics.

As a markup language, OMDOC supports elements for representing
the accepted structure “definition, theorem, proof” used by many math-
ematicians in papers and books. These can be organized in “theories”.
Special attention has been devoted in particular to proofs and they can
be marked up in a variety of ways to ensure no loss of semantical struc-
ture. For instance, OMDOC provides elements to identify steps in a proof,
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premises, conclusions, and methods. Every mathematical entity is glued
by intermediate explanatory text and possibly auxiliary items like exer-
cises, applets, and examples.

Figure 1 contains a fragment of an OpenMath Document that defines
in the natural way the binary predicate divides for natural numbers.

<theory id="primes">
<definition type="inductive" id="div" item="divides">

<CMP format="omtext" xml:lang="en">

A natural number <OMOBJ><OMV name="n"/></0MOBJ> divides a natural number
<OMOBJ><0MV name="m"/></0MOBJ>, denoted
<0MOBJ><0OMA><0OMS name="divides" cd="ida"/><0MV name="n"/><0OMV name="m"/></0MA></0OMOBJ>,
if there exists a natural number <OMOBJ><OMV name="q"/></0MOBJ> such that
<OMOBJ><OMA><0OMS cd="relationl" name="eq"/><OMV name="m"/><OMA>
<OMS cd="arithl" name="times"/><0MV name="n"/><0OMV name="q"/></0MA></0OMA></0OMOBJ>.
</CMP>
<FMP>
<OMOBJ><OMBIND><OMS cd="lc" name="Lambda"/>
<OMBVAR><OMATTR><OMATP><0MS cd="icc" name="type"/>
<0MS cd="setname" name="N"/>
</0OMATP> <0MV name="n"/> </0OMATTR>
<OMATTR><OMATP><0OMS cd="icc" name="type"/>
<OMS cd="setname" name="N"/>
</0OMATP> <OMV name="m"/> </OMATTR>
</0OMBVAR>
<OMBIND><OMS cd="quant1" name="exists"/>
<OMBVAR><OMATTR><OMATP><0MS cd="icc" name="type"/>
<OMS cd="setname" name="N"/>
</0OMATP> <OMV name="q"/> </OMATTR>
</OMBVAR><OMA><0OMS cd="relationl" name="eq"/>
<0MV name="m"/>
<OMA><0OMS cd="arithl1" name="times"/>
<OMV name="n"/>
<0OMV name="q"/>

</0MA></0MA>
</0MBIND></0OMBIND>
</0MOBJ>
</FMP>
</definition>

Fig. 1. OMDoc source fragment.

For generality, the mathematics in OpenMath Documents is repre-
sented using OpenMath objects. Although OpenMath Documents are
readable, one cannot exactly describe them as user-friendly or appealing.
High-quality presentation of the content in OMDOC format can be gen-
erated using XSL stylesheets. See for instance Fugure 5. Manipulations
on the source XML documents can be conveniently and transparently
performed in a browser-webserver architecture.
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3 Browser — Webserver Architecture for Interactive
Mathematical Documents

In this section we describe a browser-webserver based architecture used
for supporting the interactivity we desire in mathematical documents.
This architecture exploits the OpenMath technologies described in the
previous section.

Request with
uzer—agent sting

Client Server

Broweer bazed
reply

Fig. 2. General client-server contract.

All the mathematical documents we are concerned with can be ac-
cessed through a webserver by a remote client, for instance a browser.
This implies that the HTTP protocol which governs the transactions be-
tween browsers and webservers as depicted in Figure 2 is ultimately
responsible for fetching and presenting the document. In order to com-
plete such a transaction, the webserver needs to know certain information
about its client, for instance the kind of browser issuing the request. This
influences, among other things, the way a document is rendered on the
screen.

When dealing with XML sources that contain mathematical expres-
sions, such as OpenMath Documents, the possibility of directly accessing
and controlling the webserver behaviour is very powerful. For instance
it is possible to trigger a specific transformation on the source document
depending on the geographic location of the requesting client or on the
specific browser used to view the document. Mathematical concepts can
be accompanied by a translation in the suitable language or, more impor-
tantly, the notation used for the rendering of expressions can be tuned
to the regional usage (the interval 0 < x < 1 would be written (0,1] by
an Anglo-saxon, but ]0, 1] by, say, a Frenchman). Different mechanisms
of presentation can be invoked for different browsers: a reply containing
MATHML can be returned to MATHM L-enabled browsers, whereas a
reply containing images or applets can be returned to simpler browsers.

In our experiments, we used an XML/XSL extension for a popular
webserver [1] and tested our approaches with Mozilla and Netscape 2, the

2 Our work in progress is visible at http://ruby.win.tue.nl:8080/ida, when
the server is up.
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browsers known to the webserver extension. In general, such an extension
can be visualized as in Figure 3.

HTTF XML
Source
Request
1
1
1
references : X5L HITF
I _ =
| Transformer
1 Reply
¥
X5L
Stylesheets
Webserver XIWI/XSL. extension

Fig. 3. XML-XSL webserver extension..

Upon receiving a request for displaying an XML source, the webserver
inspects the processing instructions included in the header of the source.
These instructions reference the XSL stylesheet(s) to be used and deter-
mine the transformation that needs to be done. The XML engine then
dispatches the request to an XSL transformer and obtains the resulting
transformed document which will be sent back to the client. The obvious
advantage of this approach is that we need to maintain only the XML
source; the various flavours of HTML that are presented to the clients do
not exist on the server site but are generated upon request.

Additionally, server programming comes into play when interaction
with an OpenMathserver takes place. OpenMath servers are servers that
interface via OpenMath to back-engines. They are used to support the
computational requests issued interactively from the document.

In particular, the OpenMath servers used in Algebra Interactive per-
form two tasks:

— interpret the request coming from the client and handle the interac-
tion with the back-engines,
— display the results and the graphical user interface using JAVA server

pages.

3.1 OpenMath Servers

An OpenMath server is a server consiting of a combination of (possibly
one) mathematical back-engines interfaced by OpenMath Phrasebooks.
Such servers handle requests of a mathematical nature. Some examples
are given in Section 4.
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OpenMath Server
Reguest with
User—agent string
e
Client JSF page Baclk—
engines
-
Browzer—bared
- \ /
Java
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~ *
‘ CDz ‘ ‘ Codec ‘

Fig. 4. OpenMath server for Algebra Interactive.

An OpenMath Phrasebook is a program able to handle OpenMath
objects provided that they are built using the CDs that the Phrase-
book recognizes. A Phrasebook is able to perform several tasks, like
for instance evaluation, simplification, proving, solving, and printing. A
Phrasebook also specifies how the actual communication between the
software package and the OpenMath computer environment is achieved.

Upon receiving the request, the Phrasebook decides which action to
take on the OpenMath objects and prepares the queries for the selected
back-engines, possibly by distributing the computations across a net-
work [4]. In simple cases, the request corresponds directly to certain
user-commands for a single back-engine. In the case in which the back-
engine is OpenMath-aware and able to handle OpenMath directly, the
Phrasebook sends the objects along with the queries without further
intervention. However, it is also possible to take advantage of software
which is not OpenMath-aware by adding a translation layer into the
Phrasebook directly [5]. In this last case, the queries sent to the back-
engines consist of expressions in the back-engine syntax produced by the
Phrasebook on the relevant OpenMath fragments. At last, the Phrase-
book assembles the results it receives and produces OpenMath output
from them. This output is then presented to the user in a suitable form.

Phrasebooks providing an interface to and from OpenMath have been
built into experimental versions of both Axiom and Gap, cf. [12,13].
Other computer algebra packages include modules able to handle Open-
Math directly [3,17]. A possible approach of building the full Phrase-
book outside the software package is described in [5]. By use of the
JAVA libraries for OpenMath, such external Phrasebooks have been im-
plemented for the proof checkers Lego and Coq, for the computer algebra
packages Maple, Mathematica and Gap [8,6].
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4 OpenMath in Algebra Interactive

The architecture described above has been implemented for the second
version of Algebra Interactive, thus enriching the technology used in the
first version of Algebra Interactive. In this section we describe a few
examples explaining how the OpenMath technologies are used in the
forthcoming version of Algebra Interactive.

4.1 Presentations of Algebra Interactive

The source files of Algebra Interactive are OMDOC files. As explained
before these sources can be made presentable by translating them into
other formats by invoking XSL transformations.

In Algebra Interactive we use XSL stylesheets to enhance user adap-
tivity. In particular, various stylesheets are used to produce, for example,
a full text version of the document, summaries of the sections and chap-
ters, an exercise book, and versions with examples and proofs adapted
for various types of science students. At the moment, the text of Alge-
bra Interactive is in English, but we envision also other languages (e.g.,
Dutch or German) to be available in the future.

In the interactive version of Algebra Interactive the options are of-
fered to the user via a menu. Besides the interactive HTML versions of
Algebra Interactive, XSL stylesheets are also used to produce KTEX ver-
sions. 2 In Figure 5 one sees the output, rendered by Mozilla, of a trans-
formation of the source file displayed in Figure 1 into an HTML file con-
taining an overview of the material covered.

Theorem 2 ( Prime number theorem)

det prisneln) be fhe mmber of primes dn He fntenial [1, n]. Therm we have prinelr) ~ i h( )
gl
LT PAIIE B I

n

The pritne number thearem states that primefn) ~ when » tends to infinity. This means that
log(n)

prime ()

R =1. The prime number theorem was proved by Hadamard and de la Wallee Poussin in

log(r)
1896

=‘D=| |Document: Done (18 658 secs)

% & B Mozilla ~

Fig. 5. Detail of one page of Algebra Interactive as rendered by Mozilla.

3 These ITREX sources can serve as the basis for booklets accompanying the
interactive document.
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The structure of the OMDOC source of Algebra Interactive makes it
possible to feed it to a mathematical data base like MBase, [19]. Here
we envision various new possibilities for creating interactive documents.
For, in this data base the structure of dependencies of the various items
of Algebra Interactive can be stored, thus enabling the user to automat-
ically generate tailor-made books: a student interested in finite fields can
choose to make a book covering the theory of finite fields and all its pre-
requisites. This line of research is presently being pursued by the Omega
group at Saarbriicken University and Riaca at Eindhoven University of
Technology.

4.2 Use of computational back-engines

Even in a basic algebra course such as Algebra Interactive, in which
groups, rings and fields are treated, there is no single computer algebra
system suitable for directly handling all calculations involved. In Algebra
Interactive we make use of the systems Mathematica [21], Gap [16] and
CoCoA [3] to enliven mathematics by dynamic examples and exercises.
Below you find examples explaining the use of these computer algebra
systems in the online version of Algebra Interactive.

Ezample 1 (Basic Arithmetic). One of the basic results in elementary
number theory is the Prime Number Theorem:

The number of primes in the interval [1,n] is of order n/logn.

In a dynamic example a student can type in a number n € N. All
three back-engines Gap, CoCoA and Mathematica are able to compute
the number prime(n) of primes in the interval [1,n]; the result is then
returned and displayed in the text. However, of these three packages only
Mathematica is able to compute n/logn and compare it with prime(n).
Moreover, only Mathematica can graph both prime(n) and n/logn.

In Algebra Interactive the user can specify the computer algebra
system to use. In this example, Mathematica provides evidently more
information. 4

Ezample 2 (Group and Ring Theory). Although Mathematica and Gap
are capable of handling polynomials, CoCoA is better suited for dealing
with subtler questions in Ring Theory. For example, checking maximality
of the ideal (5, X2 4+ X + 1) in Z[X] can only be established directly by
CoCoA but not by the other two packages.

The package Gap is certainly the best when dealing with groups. But
even in Group Theory one may want to make use of the graphical power
of Mathematica.

To each permutation group G on a set {2, say, we can associate a
graph I" with vertex set {2 and edge set an orbit of G on the pairs from

4 A user without access to Mathematica can always use the free software
packages Gap and CoCoA.
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2. The group G is contained in the automorphism group of I". With Gap
the edge set can easily be determined but in Gap no means of graphical
visualization is available. With Mathematica we can display the graph
within a picture.

As an example, consider the group

G =1{((2,5)(3,6)(4,7),(1,5,2)(3,6,8)(4,7,9), (1,5,8,10,4)(2,6,9,3,7)),

acting on the set 2 = {1,...,10}. The G-orbit F of the pair {1,8} has
length 15. The corresponding graph I' = ({2, E) is the Petersen graph.

Below you see the Gap computation and Mathematica’s graphical
presentation.

gap> G:=Group((2,5)(3,6)(4,7),(1,5,2)(3,6,8)(4,7,9),(1,5,8,10,4)(2,6,9,3,7));

Group((2,5)(3,6) (4,7),(1,5,2)(3,6,8)(4,7,9),(1,5,8,10,4)(2,6,9,3,7))

gap> Orbit(G,[1,8],0nSets);

[t 831,083,511, [5,101,(2,61,[7,81,[2,11, [4,81],

[6,91,03,91,[1,10]1, (4,611,083, 71, 04,51, [1,91,
[2,71]1

>

<<DiscreteMath‘Combinatorica‘

In[1] := ShowGraph[MakeGraph[{1,2,3,4,5,6,7,8,9,10},
MemberQ[{{1,8},{3,5},{5,10},{2,6},{7,8},{2,10},{4,8},
{6,9},{3,9},{1,10},{4,6},{3,7},{4,5},{1,9},{2,7}},
{#1,#2}&]11]

AN

Fig. 6. Mathematica’s Petersen graph.

The communication between the two packages is established using
an OpenMath server. The Gap output

([1..
[
[

[5,101, [2, 61,
1, 06,91, [3,91, 1,101,

o], [ [
: [1,91, 02,711

L8]
, 61
is translated into the following OpenMath syntacs for the graph I”, which
consits of a (vertex) set and an edge set:
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<0OMOBJ>
<0OMA>
<OMS cd="ida" name="graph"/>
<0MA>
<OMS cd="setl" name="set">
<0OMV name="1" id="1"/> ... <OMV name="10" id="10"/>
</0MA>
<0OMA>
<OMS cd="setl" name="set">
<0MA>
<0MS cd="ida" name="edge"/>
<0MV name="1" xref="1"/>
<0MV name="8" xref="8"/>
</0MA>

<OMA>
<0MS cd="ida" name="edge"/>
<0MV name="2" xref="2"/>
<0MV name="7" xref="7"/>
</0MA>
</0MA>
</0MA>
</0MOBJ>

The Mathematica phrasebook takes care of the translation into Mathe-
matica syntax

MakeGraph[{1,2,3,4,5,6,7,8,9,10},
MemberQ[{{1,8},{3,5},{5,10},{2,6},{7,8},{2,10},{4,8},
{6,9},{3,9},{1,10},{4,6},{3,7},{4,5},{1,9},{2,7}},
{#1,#2}&1]

and sends it to Mathematica for producing the graphical presentation.

Sometimes naturally occurring questions in basic algebra require the
usage of more than one back-engine. Consider the ring R = Z,[X]/(f),
where Z,, denotes the field with p elements, p prime, and f is a polynomial
of positive degree in Z,[X]. If a € R is an invertible element, then
multiplication by a determines a permutation o, : R — R of the finite set
R. Group theory aspects of such permutations are best studied in Gap,
whereas CoCoA is best suited for studying the ring theoretic aspects. For
example, questions related to the order of o, or type of group generated
by permutations of the form o}, with b invertible, are best solved by
Gap. On the other hand, finding invertible elements in R giving rise to
a specific permutation requires a computation better suited for CoCoA.

Ezample 3 (Ezxercises). Algebra Interactive contains various types of ex-
ercises. There are multiple choice questions, open exercises of theoretical
type and open exercises of computational type. For the latter sort the
available computer algebra systems are used tot check a student’s an-
swer.

An example of such an exercise is the following:
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Give generating automorphisms of the automorphism group of the

square as permutations of the four vertices 1,...,4.
4 3
1 2

Here a student can give many good answers, varying from the rotation
(1,2,3,4) and reflection (1, 3) to the list of all 8 symmetries of the square.
Instead of listing all possible answers, we use the computing power of
Gap to check correctness. Moreover, by using Gap it is even possible
to spot certain types of errors in wrong answers. For example, if the
permutations given in an answer do not generate the full group, the
student is prompted to add more automorphisms. If a permutation is
not an automorphism, then the student is asked to remove it from the
answer and think of other generators.

Similarly, questions concerning generators of ideals can have infinitely
many correct answers. Answers to such questions are best checked with
a back engine, e.g. CoCoA.

5 Conclusions

In this paper we discussed some new OpenMath and OMDOC technolo-
gies and their applications to interactive mathematical documents. In
particular, we described the new features that are being incorporated in
the forthcoming second version of Algebra Interactive.

Advantages of using OpenMath and OMDOC in mathematical docu-
ments are:

— Documents can be presented in several formats, like HTML, XHTML,
ITEX, pdf, PostScript, ...

— The presentation of the content is flexible and can be adapted to the
user. From the same source one can make a full text version as well
as summaries or sheets for presenting the material in class.

— The use of several computational back-engines makes it possible to
create many dynamical examples, including visualization of mathe-
matical concepts and automated theorem proving.

— Computer algebra systems can be used for checking exercises.

Besides these advantages we should also mention some drawbacks.
In the approach we have taken, the source documents have been marked
up using the OMDoC format. Producing such sources is a tedious and
time consuming job, as, at present, there are no good authoring tools
available.
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Also the set up of an OpenMath server with several computer algebra

systems as back-engines is cumbersome, as a developer needs to master
various technologies, such as OpenMath, JAVA, JsP, Gap, and Mathemat-

1ca.
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