
Interactive Mathematical Documents on the Web

A.M. Cohen H. Cuypers E. Reinaldo Barreiro
H. Sterk

Department of Mathematics
Eindhoven University of Technology

January 21, 2002

Abstract

This paper deals with our work on interactive mathematical docu-
ments that make use of the World Wide Web. The work is concerned
with a computer environment that is able to invoke various specialized
mathematical software systems.

We are concerned with interactive mathemtical documents taking
input from various sources, users and mathematical services. Commu-
nication between these three different entities has been realized using
OpenMath. But, such communication and the interactivity inside the
mathematical document take place in a specific, but dynamic context
or state. In this paper we present a solution on how to keep track of
this dynamical state and describe our implementation of this.

1 Introduction

Although the notion of an interactive mathematical document has been
around for several years, cf. [13], its realization is nowhere near the final
stage. Recent web technological progress, for instance, has enabled a much
smoother communication of mathematics than ever before. The use of an
interactive mathematical document can provide a window to the world of
mathematical services on the internet, and a mathematical service on the
internet can be created by building an interactive mathematical document.
The purpose of this paper is to describe an architecture and the latest tools
we have developed towards an interactive mathematical document. In this
vein, the paper can be viewed as a sequel to [11].

In this paper we describe the type of web service we have in mind, as
well as a way in which we have realized such services. Thereby we focus

1



on the user end of this window to the world of mathematical services and
show how interactive mathematical documents may be served to users. In
particular, we describe a mathematical document server which takes input
from various sources, mathematical services and users to create a context
dependent and highly interactive document and serves it to the user.

We would like to stress that the technology for achieving such goals al-
ready exists. We give a description of these in the setting of Java Technology:
Java Beans, Applets, Servlet and JSP technology,xml Java Technology and
our own Java Technology. We envision that it will require a few more years
before integrated authoring tools, as easy to use as LATEX, will be widely
available. With the work presented here, we intend to contribute to these
developments.

2 A Framework for Interactive Mathematics

In this section we describe the notions involved in our approach to interactive
mathematics. In §2.1, we begin by overviewing OpenMath. Next, in §2.2,
we address two additional requirements for our purposes: query facilities and
a notion of state of the mathematics that is being communicated. Then, in
§2.3, we sketch the architecture of an interactive mathematical enviroment.

2.1 OpenMath

Starting point for semantically rich communication across the Web is the
standard for mathematical expressions OpenMath, cf. [23]. This represen-
tation of mathematics relies on four ‘expression tree’ constructors (viz., ap-
plication, binding, attribution, and error), on five basic objects (byte arrays,
strings, integers, IEEE floats, variables), and on a special, sixth, basic ob-
ject: symbols, defined in Content Dictionaries (CDs for short). The core
CDs are publicly available collections of mathematical definitions, a sort of
xml dictionaries of mathematics. The standard documents and the collec-
tion of public Content Dictionaries for OpenMath are available from [23].
For a further introduction to OpenMath, see [11]. There it is also explained
how OpenMath and MathML complement each other in that OpenMath
objects express mathematical content whereas MathML mainly focus on
presentation. The connection between the two rests upon the facts

• that MathML works with a relatively small number of commonplace
mathematical constructs chosen within the K-12 realm of applications
and

2



• that it provides the content symbol (csymbol) for introducing a new
symbol whose semantics is not part of the core content elements of
MathML. In particular, such an external definition may reside in an
OpenMath Content Dictionary.

For purposes of alignment of MathML and OpenMath, the core CDs con-
tain symbols matching the MathML constructs.

As it stands, the OpenMath mechanism works quite well for conveying
mathematical objects: by declaring which Content Dictionaries are rele-
vant, two parties agree on a common understanding of the mathematics
they communicate. The public CDs are (well-wrought) examples, but two
parties may choose whichever Content Dictionaries they like. They could
even create CDs for the sole purpose of a brief communication. This feature
ensures a great flexibility in the use of OpenMath. However, in communica-
tion, one often wants to convey more than just the mathematical objects by
themselves. Although a message could be a mathematical object by itself
(e.g., read “The generalized Riemann Hypothesis holds”), usually, one party
asks a question and the other gives a response. Naturally, we would like a
standard way of expressing queries, a management system for parameters
accompanying the question, and a reference mechanism to couple a message
to a query of which it is an answer.

Currently, certain OpenMath objects, especially constructs using ‘ap-
plication’ are implicitly understood to be queries by means of interpre-
tations given to them in phrasebooks. The latter are programs for han-
dling OpenMath objects, parsing these into an application-native language
(e.g., Mathematica, Maple, GAP), sending the result to the application,
catching the response from the application and translating those back into
OpenMath. The phrasebook communicates only OpenMath objects of which
the symbols are defined in the CDs that the phrasebook recognizes. Thus,
a phrasebook performs the translation back and forth as well as the com-
munication. The actual task performed by the totality of the phrasebook
actions, depends on the interpretation. If the application is a computer
algebra system, the interpretation is often ‘evaluation’ or ‘simplification’:
when passed 2 + 3, these applications will return 5. If the application is a
proof assistant (e.g., Lego or Coq, cf. [9]), then ‘verifying’ or ‘proving’ is a
more likely interpretation of what the application is supposed to do, and, if
the application is a browser or printing, the interpretation is to prepare the
mathematical object for a presentation.

Phrasebooks providing interfaces to and from OpenMath have been built
into experimental versions of both Axiom and GAP, cf. [2, 15]. We have

3



developed a Java library, called ROML, for building full phrasebooks outside
mathematical software packages. It is described in [4] and can be found at
[26]. By use of ROML, such external phrasebooks have been implemented
for the proof checkers Lego and Coq, for the computer algebra packages
Maple, Mathematica and GAP [5, 6].

2.2 Mathematical Web Services

The OpenMath set up is only the beginning. For mathematical services
across the internet, many more issues have to be resolved. In §3.2 of [28],
some of these issues are listed. In [9], the reliability (quality guarantee)
aspects are emphasized. Up till now, complexity, the (estimated) time a
computation will take, has been one of the major concerns, but, although
it will remain useful for clients to be aware of feasibility, they will be more
concerned with the validity of the answer. Also, confidentiality and privacy
are important user requirements that will have to be present in user pro-
files. Clearly, there is a need for the development of service management
frameworks with adequate provision for resilience, persistence, security, con-
fidentiality and end user privacy. Here we shall only address two matters of
interest in this direction that arise from our bottom approach starting with
OpenMath:

• how to express queries and

• how to take into account the state in which a mathematical query
takes place.

We have argued that, so far, the OpenMath setup seems rather primitive
in that only mathematical expressions are passed, and no indications as to
what the required action on the object is. Currently, the phrasebook makes
this interpretation, and so the matter is resolved by a declaration from the
side of the phrasebook what its action (interpretation) is. For instance, an
OpenMath object like

Factors(Polynomial(X,X^2-1,Rationals))

will result in a response of the form

List(Polynomial(X,X-1,Rationals),Polynomial(X,X+1,Rationals)))

when sent to GAP, because its phrasebook tends to interpret the OpenMath
object as an evaluation command, whereas the same expression would just
be printed as something like “Factors of X2 − 1” when sent to a printer.

4



But there are probably better solutions, which come from automated
proof checking. A slight extension of the language in which we formulate
mathematical assertions will enable us to formulate mathematical queries.
As noted in [9], type λ calculus expressions like Γ ` ? : A, where Γ represents
the context (see below) and A an assertion of which a proof is requested, are
expected to embed into a full type checking mechanism without problems
(that is, the type inference is expected to remain a valid algorithm, and so
on). So, within the OpenMath framework, we expect that it is possible and
sound to handle queries by means of a CD defining the most fundamental
types of question asked.

In the remainder of this paper, we mainly focus on the second issue, how
to handle the state in which a mathematical query takes place. We note
that this problem has not been addressed in some of the more successful
mathematical services on the internet, such as Sloane [27], Faugère’s Gröbner
basis service [14], Wilson’s Atlas of representations of finite simple groups
[32], Brouwer’s coding theory data base [3], and WebMathematica [31].

For example, Webmathematica is a way to access Mathematica via the
Web. Via browser pages users can formulate either full Mathematica com-
mands or input for pre-programmed Mathematica commands (so that no
specific knowledge of Mathematica is required) which will then be carried
out by a Mathematica program run by a server accessible to the user. How-
ever, after the command is carried out, the Mathematica session is ‘cleaned’
in that the user can no longer refer to the previous command. So, it is
possible to, say, compute the determinant of a matrix but the user cannot
assign the matrix to a variable, say A, and change an entry of A, and/or
ask for A−1 without re-entering the entries of A.

Clearly, as is the case for a Mathematica session per se, it is desirable to
be able to refer to the variables at hand in a work session, to be able to ask
for a second computation regarding an object passed on earlier, and so on.
From a CAS (=Computer Algebra System) point of view, the state is a list
of definitions, that is, assignments to variables, of objects introduced (and
computed) before (think of the assignment statements and of the In[?] and
Out[?] variables in Mathematica).

However, we wish to incorporate one more feature in our notion of state.
This one is taken from logic, where the notion of a context is our source of
inspiration. Indeed the symbol Γ above stands for context, and contains,
besides definitions, statements, which are interpreted as ‘the truth’. This
means that theorems, lemmas, conjectures, and so on, may be thrown in,
and are all interpreted as ‘facts’. We stress that there may very well be
assumptions in the context, so that it might be possible to derive a contra-

5



diction. In particular, it would not be desirable to have the starting state of
an interactive book be self-contradictory, but, in the course of a user devel-
oped proof by contradiction, there is nothing against a set of assumptions
from which the user can derive 0 = 1.

It is such a list of definitions of objects and of statements, which is
called context in the case of theorem provers, that gives a good starting
point to what we consider to be the state of a mathematical session. It
will be clear that this context is highly dynamic: for instance, if, in the
example of the matrix A above, the user wants to consider the matrix over
GF(11)(x, y, z) rather than Q[x, y, z], a change of the coefficient ring should
be the corresponding action on the state (or context).

So, what is needed is a way to exploit such data, regarding the state
or context, whenever a server providing a service to the user needs more
knowledge. In the remainder of this paper, we mainly describe how we
intend to solve this issue.

Above we have explained how we envision smooth communication using
OpenMath with several mathematical services on the web. In this way, we
can enrich mathematical documents with mathematical services. However,
an interactive mathematical document should allow several types of inter-
action, depending on its context and the input obtained from its source, a
user or some mathematical services. This implies that the source of such an
interactive document, should not only be semantically rich but also highly
structured and enabling the interactivity.

2.3 The Mathematical Document Server

In this section we specify a general model of how to create highly interactive
mathematical documents.

The heart of our architecture is a mathematical document server. In our
view, this server takes input from mathematical source documents, mathe-
matical (web) services and users and serves a view on the interactive docu-
ment to the user. The document server takes care of the presentation of the
document to the user, it handles the communication between user and sev-
eral mathematical services and keeps track of and manages the (mathemat-
ical) context in which presentation and communication take place. Figure
2 displays the essential parts of our architecture and their dependencies.

The architecture we have chosen for an interactive mathematical docu-
ment is based on the idea of an interactive book: the (static) mathematics is
included in a source document (or source, for short). It is highly structured
and semantically sufficiently rich to create an exact mathematical descrip-

6



Figure 1: General architecture

tion of the content and to allow actions. The document server uses this
mathematical content together with input from the user and mathematical
services to specify the context or state of the interactive document. The
context certainly depends on user actions; a jump from one entry in the
source to another may alter the context. But also results from queries to
mathematical services form input for the creation of the context. Within
this context a presentation of the content relevant to the mathematical set-
ting in which the user ‘resides’, is realized and can be presented to the user
via an interface. In line with the discussion of §2.2, the context consists of

• assignments to variables of OpenMath objects (and so are interpreted
as definitions), or

• OpenMath objects representing mathematical assertions.

• results from queries obtained from mathematical services.

• but also logistic information, for example, the users id, his mathemat-
ical background, his permissions to use commercial services, etc.

At each time, the context gives a precise description of the state the user is
in by means of this data.

7



A simple example of this model is realized in a LATEX enviroment. Here
the document server produces, on demand from a user, a dvi or postscript
file from a LATEX source and serves it using a dvi or postscript viewer to the
user. Here the context is just given by the user’s request to create a dvi or
a postscript file, to view on the screen or send it to a printer, etc.

A more advanced example can be realized in an xml-Java setting. Here
the source consists of an xml-source. The document server creates, for ex-
ample by xsl-transformations an Html or xml document and serves it as a
web server to the user. Using a web browser as interface, the user can view a
presentation of the document. Interactivity and communication with math-
ematical services can be realized inside the web server using Java-applets
or servlet. Our present approach for realizing interactive mathematical doc-
uments is based on this example and will be discussed in the next section.

Creation and bookkeeping of the context as well as presentation of the
content is taken care of by the user document server. This server also han-
dles the communication, between the source, the user and mathematical
services. It has presentation information and the context stored as dynamic
data. The context is relevant for the mathematics in the communication
with the outside world. Depending on the model of communication with
a mathematical service, the provider of the service may be aware of the
state the user’s mathematics is in by means of incremental steps (loading
the context at the initial stage and translating the user defined changes one
by one), or by means of downloading the entire context (or the relevant
portions thereof) upon receipt of a new query.

Of course, our primary target is a mathematical context, where, for ex-
ample, in a chapter on ring theory of an algebra book, the field of coefficients
might be specified to be a finite field. By interaction of the user interface
with the user, this context can be further specialized to, say, the field GF(11)
of order eleven. In the presentation of an example of a polynomial ring, the
user interface will take care of choosing a polynomial ring over GF(11).

Some variables in the context can also be of a logistic nature. For in-
stance the user name might help to create a personalized version of the
context, relevant for tracking the way a student goes through an interactive
text book.

3 Mathbook, our implementation

In this section we discuss how we have implemented the architecture pre-
sented in §2 within a Java-xml enviroment. Our big motivating example

8



is a forthcoming new edition of the interactive book Algebra Interactive!
(see [7]), which is interactive course material for first year undergraduate
algebra. We shall use the word MathBook for an interactive mathematical
document, as well as for the ensemble of software tools we are building for
the construction of interactive mathematical documents such as Algebra In-
teractive. We shall deal with each of the components of the architecture
separately.

3.1 The Mathbook Source

We have derived our own document type definitions (DTD) for the Math-
Book source, an xml document. As a result, there is an xml based markup
language (the MathBook DTD) for the creation of interactive mathemati-
cal documents. We have been influenced by both DocBook [8] and OMDoc
[22]. The former is a fairly general standard for electronic books, the latter
is a very rich, and strongly logic-oriented standard for mathematical doc-
uments. We intend to maintain a close link with OMDoc, but found the
overall machinery involved too heavy for our purposes. Also, the connection
with DocBook is of importance to us, since we expect several authoring tools
for it to emerge in the coming few years, and we want to profit from their
presence.

The mathematics in the source is given by means of OpenMath objects.
This feature has clear advantages in terms of portability. The DocBook
type grammar sees to it that there are natural scopes, where mathematical
objects ‘live’. For instance, when a chapter begins with “Let F be a field”,
the scope of the variable F is assumed to be the whole chapter (although,
somewhere further down the hierarchy, say in a section of the chapter, this
assignment can be overridden). Within the MathBook grammar, special
attention is also given to interactivity.

3.2 The Mathbook document server

As mentioned in the previous section, the mathematical document server,
in our approach called the Mathbook document server, should cater for pre-
sentation, communication, and context. It should support a wide range of
actions: ways to easily define interactions with other mathematical (and
non-mathematical) services. Actions are important because they enable the
true interactivity for the user. Examples of actions are:

• sending an OpenMath object to evaluate to a backengine (e.g. Math-
ematica),

9



• retrieving the answer to a query from a web service and reacting on
the outcome.

• transforming OpenMath into Mathml presentation,

• casting OpenMath objects to OpenMath objects of another (often
more structured) kind (for instance, a list of lists onto a matrix),

• searching within documents for mathematical content,

• placing (and retrieving) objects into the context,

• controlling the flow within a document,

• iterating actions,

• making a printout of the document

In our current implementation, we have realized this by using a Java web
container/server (e.g., tomcat or BEA weblogic) including or in conjunction
with an xsl-transformer.

The xsl-transformer uses Mathbook xsl style sheets to transform the
Mathbook sources into web applications (xml and JSP pages, together with
Java-software to be discussed below) that reside on the web container. This
web server presents these documents to a user via a Java-enable browser.
The web browser also acts as a user interface to the web server. The commu-
nication between web container, user and mathematical services is controlled
by Java technology contained in the web container. Indeed, communication
is governed by Java servlets and phrasebooks; the actions defined within
the Mathbook sources are mapped onto and taken care of by a Java tag
library, called the Mathbook taglib. We elaborate on these in the following
subsections.

As we also want to be able to print our documents, we have also de-
veloped xsl style sheets transforming our sources into LATEX. By adding a
LATEX enviroment to our Mathbook document server, we can produce the
desired high quality printouts.

3.3 Presentation

In a way, the first order of business is to make the content of the source
visible to the user. There are numerous ways to prepare for such views.
The generic way in which we prepare a view is by xsl-transformation of the
xml Mathbook source using dedicated xsl style sheets. We have developed

10



Figure 2: Mathbook implementation

xsl style sheet to transform our sources in LATEX and Html or presentable
xml. In the latter case OpenMath objects are translated into Mathml, the
standard for displaying mathematics over the internet.

In interactive sessions, we have a dynamical situation, so that it is de-
sirable to transform OpenMath objects on the fly. Because the programs
working with xsl stylesheets are interpreters, this is a slow process, there-
fore we have also written a OpenMath to MathML phrasebook. This Java

software performs the translations directly and resides inside the web con-
tainer.

The OpenMath to Mathml phrasebook behaves very much like any
phrasebook, albeit that sometimes we need a little help from the source
beyond regular OpenMath. Let us give two examples. In LATEX, for each
individual fraction, the author has a choice between a slash and a fraction
display. In

3/4
5/6

=
3/2
5/3

=
9
10

= 9/10

we have used them both.
The other example concerns the statement “3, 4 ∈ Z”. The correspond-

ing OpenMath expression would be the equivalent of “3 ∈ Z and 4 ∈ Z”,

11



whereas the presentation in the first form is highly desirable from an esthetic
point of view.

In order to have such flexible presentation, we are using presentation
annotated OpenMath. This means, that in our Mathbook source we al-
low style attribute inside OpenMath objects. By just discarding these style
attributes, regular OpenMath is obtained. So, one can easily go from anno-
tated OpenMath to ”bare” OpenMath.

3.4 Communication

All our communication tools are based on Java Technology. The ROML
based phrasebooks (cf. §2.1) operate as web components in the web appli-
cations inside the Java enviroment of the web container and enable us to
make mathematical software packages accessible over the Web. There are
examples of such services in our experimental version of Algebra Interac-
tive for both Mathematica and GAP. We intend to experiment further with
CoCoA, Maple and theorem prover engines such as COQ.

3.5 Context

The existence of a context is meaningful only if the author can install pow-
erful tools for the user to keep track of inputs and for using this information
to check consistency and to update pages automatically when these are log-
ically related. With these observations in mind, we developed a first version
of context management within the Mathbook tag library at the web con-
tainer.

We will give two snippets of code to illustrate some of the tags of the
Mathbook taglib and to give the reader an idea how an author may create
interactivity. The code

<ida:xslt url="http://localhost:8080/mathml/xsl/omobj-mathml.xsl">
<ida:cast type="univpoly">
<ida:phreval name="MathematicaPhrasebook" scope="session">
<OMOBJ>
<OMA>
<OMS cd="univpoly1" name="expand"/>
<OMA>
<OMS cd="univpoly1" name="gcd"/>
<ida:getomcontent>
<ida:getvarvalue name="polynomial_a"/>
</ida:getomcontent>

12



<ida:getomcontent>
<ida:getvarvalue name="polynomial_b"/>
</ida:getomcontent>
</OMA>
</OMA>

</OMOBJ>
</ida:phreval>
</ida:cast>
</ida:xslt>

uses the combined effects of the following tags.

• getvarvalue: Read two strings representing OpenMath objects that
were previously stored in the variables polynomial a and polynomial b,
respectively.

• getomcontent: Remove the markers <OMOBJ> and </OMOBJ> at the
beginning and the end of an OpenMath object.

• phreval: Send the constructed OpenMath object to Mathematica for
evaluation. More precisely, the phreval tag reads its content (a string
object) and makes use of a Mathematica JavaBean named Mathemat-
icaPhrasebook, that was previously created and stored in the session
scope, to translate it to Mathematica syntax and send it to Mathemat-
ica. Once an answer is obtained from Mathematica, the corresponding
OpenMath object is generated and translated to a string object con-
taining the xml encoding of the OpenMath object.

• cast: Cast the returned OpenMath object, representing an algebraic
expression, to an OpenMath object representing a univariate polyno-
mial.

• xslt: Produce the MathML presentation encoding for the OpenMath
object (by means of a style sheet). More in detail, the xlst reads
the OpenMath object, that the phreval tag returned, and transforms
it into Mathml by means of the xsl style sheet specified on the url
attribute of the xslt tag.

Note that the scope is set to session. This implies that, at the time
the user visits this particular part of the source, the context will have
the variables polynomial a and polynomial b, but when the user leaves it,
these will no longer stay alive. The scope is introduced by a command like

13



<ida:enablescope scope="session"/>. The above code then creates an
OpenMath object (in fact, a univariate polynomial) that is placed in the
session scope.

The next snippet shows how objects in the context can be changed.

<ida:addtoscope name="matrixsquared" scope="session">
<OMOBJ>
<OMA>
<OMS cd="arith1" name="times"/>
<ida:getomcontent>
<ida:getfromscope name="matrix"/>
</ida:getomcontent>
<ida:getomcontent>
<ida:getfromscope name="matrix"/>
</ida:getomcontent>
</OMA>
</OMOBJ>
</ida:addtoscope>

Here, the OpenMath object named matrix is read from the session scope
(by means of the getfromscope tag). This object is used to create a
new OpenMath object that is placed in the session scope (by means of
the addtoscope tag) with name matrixsquared.

The ability to store session bound objects allows us to implement context
tracing tools. Servlet technology has the ability to maintain server side
objects in different scopes. By default, it supports scopes for the application,
the session, the page, and the request. For interaction with backengines, as
we have seen, the most important one is the session scope. Since for each user
a different session scope is created, the server side can distinguish between
different clients (users). The state of the user’s mathematics can be loaded
by reading in all the variables defined in the session scope.

Let us come back to the example of the chapter that begins with “Let F
be a field”. It is very easy for the author to create a page with an example
computation within an effective field (that is, a field in which the arithmetic
is feasible on a computer) of the user’s choice. The specific choice of F will
be eradicated when the user closes the example.

3.6 Examples

We make the picture described above more concrete by considering the fol-
lowing five scenarios.

14



1. An author of a book on mathematical analysis has used both Maple
[18] and Mathematica [19] to write algorithms discussed in his/her book.
At times, the results of one system are fed into the other. Preferably, the
author would like to write the code only once.

2. At a high school, students have been assigned a project on cryptography.
In this context, they need to know about prime numbers. They need to
know the definition of a prime number, to find a few prime numbers of 200
digits and to compute related encoding and decoding keys.

3. An engineer of an international oil company visits a platform to repair one
of the crucial pumps. At the spot, the engineer needs to know the outcome
of some involved computations regarding the flow in pipes connected to the
pump, the input values of which are read off from the pump’s gauges.

4. A financial consultant, visiting a client, connects a laptop to a server of
some investment banks or insurance companies and uses the most up to date
information of the stock market and of the client as input for computations
leading to a consultancy.

In each of the above scenarios a suitable interactive mathematical doc-
ument can offer the appropriate mathematical services via the internet. In
[12] we have described a way to provide the computing facilities of vari-
ous mathematical software packages via OpenMath servers to the internet
community. However, in the scenarios described above, the mathemati-
cal services cannot consist solely of web interfaces to some computational
backengines, but ask for more specialized activities. The engineer of an oil
company in Scenario 3 does not really need to know the outcome of some
involved computations regarding the flow in pipes connected to the pump,
but needs to relate these results to the specifications of the pump. He might
want to know which parts of the pump should be replaced.

In Scenario 4, the financial consultant is not really interested in the
outcome of the mathematical queries, but might want to present to the
client those life insurance options best fitting the circumstances. The high
school student studying prime numbers in Scenario 2 not only wants to get
large prime numbers from a backengine, but wants to use these numbers in
some of the examples of an RSA cryptosystem, without knowing the syntax
of the backengine.

To finish the discussion of our implementation, we revisit the five sce-
narios and indicate what can be achieved with the MathBook tools.

1. An author of an interactive book on mathematical analysis has used both
Maple [18] and Mathematica [19] to write algorithms discussed in his/her

15



book. By use of the MathBook tools, the algorithms written in either sys-
tem can be made to run virtually within the electronic version of the book.
The IDA tag library then takes care of communication with the backengines
Maple and Mathematica and the computer algebra code is stored in the
source. An alternative to sending native code to the backengines is to work
with OpenMath. If the commands are confined to standard applications
such as factorization of polynomials, the EVAL interpretation of the phrase-
books suffice (currently, a Maple phrasebook based on ROML does not exist,
but one based on [24] could probably be used). In this case, we can express
input and output as well-understood mathematical objects (using the cast
of the tag library, if necessary); moreover, we can ask for an evaluation by
any third CAS for which a phrasebook exists. For the author, the implemen-
tation has been reduced to writing a simple phreval tag. There is a third
option in which more elaborate commands can be run on back engines. It
uses a first version of an algorithm CD. We expect to be able to write most
of the 130 gapplets (i.e., interactive examples using GAP) from the former
edition of Algebra Interactive, in this OpenMath code, in such a way that
each of the systems GAP, CoCoA and Mathematica will be able to run the
code at the server end.

2. At a high school, students have been assigned a project on cryptography.
In this context, they need to know about prime numbers. There are many
home pages about prime numbers, see e.g. [25] for an interesting one. Most
of these sites contain a lot of static information, but lack available compu-
tation power, for instance to check primality of a given number. As part
of the ESPRIT OpenMath project, we have made sample pages on prime
numbers, backed up by GAP and Mathematica, in which the students can
actually profit form the computation power of these backengines with having
to know anything from the syntax of these backengines. They can retrieve
primes with 200 or more digits to built a realistic and safe RSA cryptosys-
tem, they can break such systems using too small primes, they can search
for Mersenne primes, etc.

3. An engineer of an international oil company visits a platform to repair one
of the crucial pumps. In the MathBook software it is straightforward to write
an interactive document for the purpose that the Mathbook document server
fetches the data needed by the engineer, link it to mathematical software
for the relevant computations, and retrieve the required integers or floating
point numbers. By means of the Java technology, the document presented
to the engineer may only display the conclusion (e.g., which gauge should
be replaced) in words and/or pictures.

16



4. A financial consultant, visiting a client, connects through his/her laptop
to the main servers of some investment banks and companies and uses the
most up to date information of the stock market and of the client as input
for computations leading to a consultancy. The Mathbook document server
may now be on the laptop of the cosultant. It takes care of retrieving the
important information from various financial sources and combines this with
the wishes of the client. Then the data is translated into the right syntax to
be used by the mathematical software for calculating an optimal solution for
the clients problems. The financial consultant need not be concerned with
the composition of two programs. Within a session scope, the data fetched
from the main server of the companies can be held, and prepared for input
into the private computations.

4 Conclusion

We have argued that OpenMath objects suffice to pass on mathematics in
a rigorous way between software systems, but that two more features are of
immediate need: query facilities and management of the context (or state)
of the mathematics in which the user is immersed. A solution of the query
problem seems feasible on a fundamental level within the OpenMath frame-
work, but the context problem requires more experimentation. We expect
that the IDA tag library will solve some of the most urgent matters in this
respect. Authors can use it to augment their xml sources (in MathBook
format), so as to obtain a high degree of structured mathematical interac-
tivity.

A major obstacle to authoring an interactive document is the inaccessi-
bility of xml source code, the enormous amount of brackets and labels, such
as in the examples of code in §3.5. The general expectation is that, once
good special purpose editors have been developed, no author will need to
work with the elaborate xml sources. However, currently there is no alterna-
tive at hand. There are two editors for OpenMath objects, viz. [17, 20], but
these do not suffice for the more elaborate source documents described in
§3.1. By means of the IDA tag library, we have tried to reduce the difficulties
of authoring as far as possible, but some xml editing remains necessary.

Another issue to be explored is ‘searching for mathematical content’.
Standard xml techniques might work on CDs. Although the interdepen-
dence of CDs is rather loosely organized (there is a CDUses field in a CD
indicating on which other CDs the definition of symbols contained in it de-
pend), standard xml tools will be able to produce the dependence trees. For

17



example, via the CDUses construct we will be able to unravel that times in
the core CD group refers to times in the core CD monoid, which in turn
refers to times in arith1. Mathematical knowledge has always a hierarchi-
cal structure. It is the question whether the CDUses construct will suffice for
an efficient implementation of the full hierarchy and the related searches.

References

[1] Amaya, W3C’s Editor/Browser, www.w3.org/Amaya.

[2] Axiom interface to OpenMath. OpenMath ESPRIT Deliverable, 2000,
www.nag.co.uk/projects/\Om{}/final/node10.htm.

[3] A. E. Brouwer. Coding theory server, for bounds on the minimum dis-
tance of q-ary linear codes, q = 2, 3, 4, 5, 7, 8, 9,
http://www.win.tue.nl/~aeb/voorlincod.html.

[4] O. Caprotti, A. M. Cohen, and M. Riem. Java Phrasebooks for Com-
puter Algebra and Automated Deduction. SIGSAM Bulletin, 2000. Spe-
cial Issue on OpenMath.

[5] O. Caprotti and A.M. Cohen. Connecting proof checkers and computer
algebra using OpenMath, pp. 109–112 in The 12th International Confer-
ence on Theorem Proving in Higher Order Logics (Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, L. Théry eds.) Nice, France, September 1999.
Springer Lecture Notes in Computer Science, vol. 1690

[6] O. Caprotti and M. Oostdijk. How to formally and efficiently prove
prime(2999), in Proceedings of Calculemus 2000: 8th Symposium on
the Integration of Symbolic Computation and Mechanized Reasoning,
St. Andrews, Scotland, August 2000.

[7] A.M. Cohen, H. Cuypers, H. Sterk. Algebra Interactive!, Interactive
lecture notes on Algebra (paper book and CD-Rom), Springer-Verlag,
Heidelberg, August 1999.

[8] DocBook, http://www.docbook.org.

[9] H. Barendregt and Arjeh M. Cohen. Electronic communication of math-
ematics and the interaction of computer algebra systems and proof as-
sistants. J. Symbolic Computation 32 (2001) 3–22.

18



[10] O. Caprotti, A.M. Cohen, D. Carlisle, The OpenMath Standard,
www.nag.co.uk/projects/omstd/.

[11] Olga Caprotti, Arjeh M. Cohen, Hans Cuypers, Hans Sterk. OpenMath
Technology for Interactive Mathematical Documents, to appear in Lis-
bon Proceedings.

[12] Olga Caprotti, Arjeh M. Cohen, Hans Cuypers, Manfred N. Riem, and
Hans Sterk. Using OpenMath Servers for Distributing Mathematical
Computations, pp. 325–336 in: ATCM 2000: Proceedings of the Fifth
Asian Technology Conference in Mathematics, Chiang-Mai, Thailand,
Wei Chi Yang, Sung-Chi Chu, Jen-Chung Chuan (eds.), ATCM, Inc.,
2000.

[13] A.M. Cohen and L. Meertens. The ACELA project: Aims and Plans,
pp. 7–23 in Computer-Human interaction in Symbolic Computation
(ed. N. Kajler), Texts and Monographs in Symbolic Computation,
Springer-Verlag, Wien, 1998

[14] J.C. Faugère’s Polynomial Equations Server,
www-calfor.lip6.fr/~jcf.

[15] GAP interface to OpenMath. OpenMath ESPRIT Deliverable, 2000,
www-groups.dcs.st-andrews.ac.uk/~gap/Info4/deposit.html.

[16] JavaServer Pages, for dynamically generated Web content,
java.sun.com/products/jsp/.

[17] Jome: Java OpenMath editor, http://mainline.essi.fr.

[18] Maple, the computer algebra system, www.maplesoft.com.

[19] Mathematica, the computer algebra system, www.wolfram.com.

[20] MathWriter, Stilo’s editor for rapid generation of mathematical expres-
sions for display and processing on the web (handles Mathml and
OpenMath),
STILO: www.stilo.com.

[21] Mozilla, a browser development project, www.mozilla.org.

[22] OMDoc, a standard for open mathematical documents,
www.mathweb.org/omdoc/.

[23] OpenMath Society Website, www.\om{}.org.

19



[24] PolyLab Java Phrasebook for Maple,
team.polylab.sfu.ca/~warp/\om{}0.7.6.tar.

[25] Prime Pages, http://www.utm.edu/research/primes.

[26] ROML, The RIACA OpenMath Library,
crystal.win.tue.nl/download/.

[27] N.J.A. Sloane. Online Encyclopedia of Integer Sequences,
www.research.att.com/~njas/sequences.

[28] Andrew Solomon, Distributed Computing for Mathematical System In-
tegration, to appear in this volume, 2001.

[29] Tomcat, servlet container used in the Jakarta Project,
jakarta.apache/org/tomcat.

[30] Unicode version 3.2, including virtually all of the standrad characters
used in mathematics, www.unicode.org/unicode/reports/tr25.

[31] WebMathematica, Mathematica on the Web,
www.wolfram.com/products/webmathematica.

[32] R. A. Wilson. Atlas of Finite Group Representations,
www.mat.bham.ac.uk/atlas.

20


