MATHBOOK: web technology for interactive
mathematical documents

Hans Cuypers Hans Sterk

Research Institute for Applications of Computer Algebra (RIACA)
Department of Mathematics and Computer Science
FEindhoven University of Technology, The Netherlands
{hansc,sterk}@win.tue.nl

1 Introduction

Internet technology is opening up new possibilities for constructing and struc-
turing documents. This paper deals with the efforts of the RIACA group
at Eindhoven University of Technology to help shape a new generation of
interactive documents, particularly in the field of mathematics. In creating
such a new generation of interactive mathematical documents, our research
combines web technology with our experience in mathematics teaching. It
should be emphasized that for our purposes the web technological side is
far from trivial, even though a glance at the internet may easily lead to the
impression that this fancy looking world leaves nothing to desire. The fact
that web technology development is not primarily driven by mathematical or
teaching interests, is a good indication that the combination of mathematics,
teaching and web technology forms a field of research that is still open for
further exploration.

In this paper we outline an architecture we have implemented to realize
our ideas so far. We discuss the functionalities that have been included as
well as their mathematical motivation, and we focus on teaching aspects.
Technical details will be ommitted and discussed elsewhere. We also out-
line the future plans of RIACA. Our work is a continuation of the research
that has led to Algebra Interactive! [3], teaching material which we use at
Eindhoven University of Technology for two undergraduate algebra courses.



2 Web technology learning environment

Starting 1998, all students entering Eindhoven University of Technology ac-
quire a laptop (on reasonable terms). Through their laptops students have
access to the internet at various places on campus, from cantines to lecture
rooms. Laptops provide students with a digital environment, that we want
to integrate with our basic algebra courses. Since algebra is often regarded
as a dull subject, we took this lack of popularity as an extra motivation to
enliven algebra courses and show its usefulness and ubiquity in the sciences.

The main feature of web technology that makes it so useful, is its potential
to extend one’s digital environment to web services all over the world. Surfing
to static pieces of information on the internet is the most commonly known
web activity, but web services of a more sophisticated nature are envisioned
for our interactive documents.

Let us first briefly outline how Algebra Interactive! came into being.

2.1 Algebra Interactive!

When dealing with mathematics and mathematics teaching, various aspects
immediately come to mind: mathematical expressions or formulas (for ex-
ample (z+ 1) —sin(z)), computations (both numerical and symbolical com-
putations), vizualizations (graphs, schematic illustrations, simulations), the
logical structure of a body of theory (what is needed to explain a concept
like prime number?), exercises (open and multiple choice). Our first aim in
Algebra Interactive! [3] was to accomodate for all these aspects, with the
technology then available (1997) or within our reach with some additional
developmental research.

Algebra Interactive! is interactive course material on elementary uni-
versity algebra, covering topics like basic arithmetic, modular arithmetic,
polynomial arithmetic, permutations, monoids, groups, rings, fields and per-
mutation groups. The main material of Algebra Interactive! comes on a
CD-rom together with a book containing the main text. The interactive
document is written in (dynamic) HTML and can be viewed through a stan-
dard web browser like Netscape 4.x or Internet Explorer 5.x. Mathematical
formulas and symbols are displayed using images (GIFs). The document
contains document specific navigation tools in addition to the standard nav-
igation buttons. It has a layered structure, viz. is constructed in chapters,
sections, pages and subpages. Pages represent the core information, but this



2 1 Ee

Figure 1: Algebra Interactive! Book and CD-rom.

information is restricted to the very heart of the matter, discussed and pre-
sented in one or two ‘tableaux’ per page with at most brief comments or a
brief connecting text. The reader is invited to dig deeper via special buttons.
For instance, proofs of theorems are not presented on these main pages, but
are hidden under ‘proof buttons’, or: each tableau comes with a multiple
choice question to test one’s immediate grasp of the material. Many dy-
namical and interactive illustrations are added in the form of JAVA applets.
These also include specialized calculators for each coherent set of computa-
tional techniques, like modular arithmetic or the calculus of permutations.
At many places the computations require more specialized software. To pro-
vide such a tool, throughout the document so-called ‘gapplets’ are inserted,
illustrations of a computational nature in input/output form, that enable
users to interface with the computer algebra package GAP [4] (the word gap-
plet is a contraction of GAP and applet), without any specific knowledge
of GAP. This enables students to concentrate on the mathematics involved.
This connection with a ‘back-engine’ turned out to be one of the main tech-
nical obstacles in the development of Algebra Interactive!. Yet, providing a
mathematical service of this kind was at the heart of our project as we will
explain in the sequel.

Finally, apart from open questions (with online hints and solutions), the
document contains a data base of multiple choice questions. The student is
given the choice to do a multiple choice test on a chapter of his/her choice or
all chapters up to a given point. A test is then randomly generated from the
relevant pool of questions and, after completion, automatically evaluated.



2.2 Algebra Interactive! in the class room

Algebra Interactive! is used in our elementary algebra courses at Eindhoven
University of Technology for first and second year mathematics and com-
puter science students starting the academic year 1999-2000. Mathematics
students attend 3 hour weekly sessions where theory, explanation, exercises
and regular tests are integrated. Instructors usually use the dynamic parts
of the material to start sessions with a motivating problem. For instance,
the Sieve of Eratosthenes can serve as an introduction to prime numbers, the
multiplicative building blocks of the integers. The corresponding illustration
produces the integers 1, ...,200 on the screen.

Click on the numbers in the following table.

O Which numbers disappear after a click?
O What can you say about the numbers that remain?

L2 1.3 1415 | |7 |_8 | | |
1 |18 |18 (17118 |
2212811261291 |
31| 32| | 34| | | 37|38 ||
41| |43 | 44| | 46 | 47 | |||
|52 | 53 | | | | | 58 | 59 | |
61 62| | 64| | | 67| 68 | |
710 |73 74| | 76 ||| 791 |
| 82183 | || 86| __ | 88 89| |
|92 ] |94 | | |97 | | | |
101]__ |[103]104| __ |[106] 107 ___ | 109 |
| 113]__ || |118]___ 1|
121122 |(124|__ | |127|128]| | |
181 | |(134|_ |[136]137| | 139| |
| 142143 | | |/146| | 148 149| |
151152 | | |___|157]158]___ ||
| |13 | 164| | 166|167 | _ | 169| |
|172]173]___|__|[176|___ | 178|179 |
181 | |(184|[ | |[187|[188] | |
191 (193194 | |[197|  |199] |

Figure 2: Erathostenes’ Sieve.

Upon clicking on a given number (> 2), all its multiples except the number
itself disappear. This leads to questions of the sort: What kind of numbers
never vanish? Is there a systematic and efficient way of producing a list
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of prime numbers up to a given point? What is the complexity of such
an algorithm? Previously discussed properties on division of integers then
naturally lead to a discussion on prime numbers. Given the computational
tools built into the document, the instructor can easily go beyond what is
usually done on the blackboard, still emphasizing the conceptual background,
and gently introducing these tools on the way.

Sessions may be interrupted for multiple choice questions to test the stu-
dents’ immediate grasp of a tableau containing a theorem or an algorithm,
etc. Longer parts of the session are spent on open questions where students
use or start using the available illustrations, computational tools (with no
specific knowledge of the back engines needed) and hints.

For computer science students, the much larger number of students makes
this set-up impossible. Instead, there is a separate course followed by practice
sessions.

Experience over the last few years show a gradually increasing appreci-
ation of the material on the side of the students; it seems as if they have
to get used to work in a digital environment, whereas the instructors also
have to get familiar with the new material. Students especially appreciate
the multiple choice questions for testing their knowledge, and the specialized
computational tools for helping them solve exercises.

2.3 Aims for a new edition, MathBook

At present it is clear that XML, the Extensible Markup Language [11], in
combination with the programming language JAVA, is becoming the new
standard for web documents. Its flexibility makes it extremely suitable for
our purposes. RIACA’s new interactive web documents and tools, for which
we have adopted the name MATHBOOK, will be constructed in an XML/JAVA
setting. MATHBOOK technology should extend the functionalities of Algebra
Interactive! and introduce more dynamic and sophisticated ones along the
lines we explain below. Our goal is twofold in the sense that we aim to
develop tools to produce interactive mathematical documents in general and
aim to produce a second edition of Algebra Interactive! in particular.

Separation of content and presentation

One of the main goals of the MATHBOOK project is to produce open, platform
independent and semantically rich mathematical documents. In contrast to
the presentation language HTML, used for our first version of Algebra In-



teractive!, the open and flexible structure of the meta-language XML makes
it possible to realize this goal. By using XML in our MATHBOOK setting,
it is possible to separate the content of our mathematical documents from
the presentation. The mathematical content and structure of our documents
are kept in XML-source files. By using XsL-stylesheets [12], we can trans-
form these sources into several presentable formats ranging from KIEX [7],
the word processor especially adapted to the needs of the mathematics com-
munity, or PDF, for book quality print-outs, to HTML or JSP-pages [5] for
highly dynamical and interactive web pages.

Not only can XsL-stylesheets be used to control the format of the pre-
sentation of the content, they can also be used to govern the contents of
this presentation. In this way a presentation can vary from a printout of an
overview of a chapter of Algebra Interactive! to a complete web version of
the chapter including all kinds of dynamic examples.

xml source
%8l
stylesheets
LaTeX PDF hrml ISP
summary || fall -T - web interactive
version version pages

Figure 3: From source to presentation.



In the sequel we explain, mainly by examples, how we add structure and
semantics to our sources, in which way we intend to add interactivity to our
documents and which types of different presentations of the material we have
in mind.

Meaningful mathematical expressions

The XML-source of a MATHBOOK document contains the structural infor-
mation of the content. In particular, the material is divided into chapters,
sections, pages, theorems, lemmas, examples, etc. Moreover, the relations
between these various items is fixed inside this source, e.g., an example or
an exercise to a theorem is linked to that theorem. The organisation of this
structural information in the XML-source is pretty much along the lines of
DocBooK [10], an XML-format for electronic books, and OMDoc [6], an
XML-format mainly concerned with mathematical databases. Besides this
structural information, we also want to capture the semantics of the mate-
rial. In particular, we want to endow mathematical expressions with their
meaning and provide for means to profit from such enriched objects. Usu-
ally, symbols (words, formulas, etc.) on the screen are interpreted by the
user only. The machine is in no way aware of their mathematical content.
For example, when we see m(x + y) in the document, we may think, based
on the context, that this refers to the product of the well-known constant m
(= 3.14159...) and z + y, but equally well it could be a projection, called
7, applied to the sum of two vectors x and y. It would be a great step
forward if the semantics of the mathematical object is stored in some way
so that the meaning of the object can be retrieved and the object can in
principle be (re)used for meaningful manipulations and computations. The
OpenMath language [9] (also used in OMDoOC) provides such a semantically
rich representation of mathematics which facilitates the exchange of mathe-
matics between software packages, including computer algebra systems like
Mathematica, Maple or GAP. Since OpenMath is XML-compatible, we have
adopted the OpenMath standard to incorporate mathematical objects into
our XML-sources. Here is a simple example of an XML encoded OpenMath
object representing w(z + ), the product of the constant 7 with the sum of
x and .



<0OMOBJ>
<0OMA><0OMS cd="arithi" name="times"/>
<OMS cd="nums1" name="pi'"/>
<OMA><OMS cd="arithi" name="plus"/>
<OMV name="x"/>
<OMV name="y"/>
</0MA>
</0MA>
</0MOBJ>

Notice that the product of 7 and (z + y) is obtained by applying (OMA)
the OpenMath symbol

<OMS cd="arithl" name="times"/>
to the symbols

<OMS cd="nums1" name="pi'"/>
and

<OMA>

<OMS cd="arithl" name="plus"/>
<OMV name="x"/>
<OMV name="y"/>

</0MA>.

The meaning of the symbols is captured in so-called Content Dictionaries,
which are specified in the “cd” attribute of the symbol.

Mathematical services

Through OpenMath we are able to exchange mathematical objects between
various software packages, if needed over the net. In other words, requests
regarding our mathematical objects can be handled by mathematical ser-
vices locally or elsewhere, since our objects are endowed with their mean-
ing. A mathematical expression in the document can be sent to a package,
say Mathematica or Maple, for evaluation without specific knowledge of the
software package, or its syntax in particular. Indeed, we have developped
JAVA-tools that take care of the communication with various back-engines.
Now, mathematical problems sometimes require the use of techniques from
different areas: general purpose packages deal with a wide range of basic
algorithms whereas specialized packages usually concentrate on algorithms
applicable in a restricted field. Fortunately, the possibility of distributing
mathematical computations is becoming a reality using internet technology,
and in previous work [2] we have designed an architecture for distributing
mathematical computations, a first step towards a framework where a range
of mathematical services are available and fully integrated. A key issue here

8



is that this usage of mathematical services is not restricted to the software
available on the user’s own machine: a computation can be dealt with by
a mathematical service located somewhere else on the internet. Here is one
aspect where the extension of one’s digital environment is becoming a reality.

For teaching purposes OpenMath and the possibility of accessing math-
ematical services provide several advantages, ranging from fairly trivial to
more sophisticated ones. For instance, the meaning of any mathematical
expression in the document can be unambiguously retrieved. This is useful
if doubt arises, say whether 7 is the name of a function, of a variable or de-
notes the famous constant. The use of computational back-engines enables
one to illustrate theorems and the like. For example, not just a tangent to
a smooth curve may be calculated, but with the help of the graphical power
of packages like Mathematica or Maple it can also be visualized in a graph.
Students can also experiment. For instance, to find a closed form for the
function f(n) defined by f(n) := 37, i. Also, automated testing of students
by open questions becomes available. A student asked for an anti-derivative
of 2-sin x-cos = can give the correct answer sin? 2 but also — cos? x or even the
maybe less obvious but still correct answer % — % A mathematical
back-engine can check the answer by taking derivatives. In short, bringing
mathematical objects to life in the sense as described above, enables stu-
dents to play around with them in a way comparable to the classical pen
and paper situation where the student was in control of both meaning and
manipulation. But the digital environment just sketched extends the scope
of the student’s actions enormously.

We have realized the above environment in the form of JSP-pages, which
we derive from our XML-source, together with a set of JAVA-tools. A JSP-
page is a web document in which there is a mixture of HTML or presentation-
XML with (calls to) JAvAa-code. The JAvA-tools govern the interaction with
the mathematical services. They make it possible to contact these mathe-
matical services, e.g., computational back-engines like Mathematica, Maple
or GAP, and submit queries to them, but also take care of handling the
responses obtained from these back-engines. For example, they take care
of displaying a graph obtained from Mathematica or a table with the first
100 values of the function f(n) := X!, i computed by GAP, or even praise
the student for giving a correct answer to the question of finding an anti-
derivative of 2 - sinz - cos x.



Flexibility of content and presentation

This digital era requires a rethinking of the roles of electronic presentation
and paper documents. The enormous success of paper documents over the
past centuries is enough indication that abolishing the paper format is to be
considered a premature act. It is more likely that in the near future a suitable
combination of formats will be the standard. Finding a suitable balance is
part of our quest.

As we already discussed before, our aim is to construct a single XML
document that serves as basis for the generation of various formats, includ-
ing formats suited for printing but also for dynamic web presentation. This
source document should contain all the structural as well as semantic infor-
mation, necessary to derive these various formats. The conversion to different
formats, directed by XsL-transformations, is less trivial than it seems at first
glance. A paper version for instance assumes a strictly linear ordering of the
material, whereas electronic versions can be non-linear or even non-static.
Before stating a short list of possibilities that have been implemented (in
still rudimentary form; the tools to construct user friendly conversion op-
tions are still under development), let us elaborate a bit on the ways one
may wish to structure documents for teaching purposes.

To begin with, Algebra Interactive! is used in courses for mathematics
and computer science students, but the material is not specifically adapted
to the needs of each of these groups. With MATHBOOK technology we are
able to generate from our source file several documents adapted to the needs
of various groups of students. Here are a few examples you can think of. For
instance, material for mathematics students could contain detailed proofs
of statements, whereas material for computer science students only outlines
proofs, and instead concentrates more on algorithmic aspects like complex-
ity. An instructor’s version including suggestions for presenting and dealing
with the material can be generated. Or maybe you want to focus on a single
topic from the material, say group theory. Then you would like to be able
to generate from the source a coherent document dealing with groups only.
Another feature is the possibility to produce documents, ranging from sum-
maries to complete text books, and display them as interactive material on
the web or print them on paper.

Here is a list of formats that we have so far implemented (although cor-
responding menu driven tools for authors are not yet available):

e Paper versions: from the XML source book quality printable formats
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can be

BTEX.

generated via stylesheets that transform the document into
This assumes that the XML source contains the relevant in-

formation to generate a complete, linearly ordered document.

e Linear electronic versions: linearly ordered documents including dy-
namic illustrations and computational facilities.

e Non-linear electronic versions: here, authors are presented with options
to choose various ways of structuring and layering the document.

Chapter 3 [l
Polynomials

(hapter § !l
Permutations &

%
Chapter 6 || 3=

Honoids and GW"-'B’L
Wl

Using Eratosthenes” sieve we can find all the primes in the interval [1, »] . E
The total number of primes to be found in theinterval [1, n] can be
approximated as follows.

Theorem. ( Prime number theorem)

Let prime(n) be the number of primes in the interval [1, n] . Then we have

prime(n) ~nf log(n)

when n tovi;r # pfarhe
= xdvi: fileid [
unated as lollows.
— Theorem 1.1.11 | Prime number theorem]| Let IL(n) be the number of primes

in the interval [Ln]. Then we have

bl

{n) ~

logn

et when o tends Lo infinity.

! The prime number theorem states that [I(n) ~ ﬁ when n tends to
Mim}

infinityv. This means that lim, , . —— = 1. The prime mimber theorem was

e
proved by Hadamard and de la Vallee Poussin in 1896,

Application 1.1.12 Xandra studies in Eindhoven and her friend Yvonne in
Canberra. Clearly they are a long way apart. But they want to know if they

have the same studv material. Locallv thev both have shenomenal machinery

Figure 4: A web and printable version of a page.

Let us turn to the issue of presentation of mathematical symbols on the

screen. Since OpenMath is compatible with MATHML [13], an XML com-
patible standard for presentation of mathematical expressions, presentation
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problems as with HTML are resolved as soon as MATHML is standardly sup-
ported by browsers (currently, we use the browser Mozzila [8] in our work
since it supports MATHML). We no longer need to include mathematical
expressions through gifs or similar cumbersome approaches.

Finally we should mention, that we are not yet planning to include adap-
tivity in the sense of for example De Bra et al. [1], where the document
changes in response to the user’s actions.

3 Conclusion

Our teaching experience with Algebra Interactive! and constant experimen-
tation with emerging internet technologies in the RTIACA group help shape
our efforts to produce a new generation of interactive mathematical docu-
ments. We are nearing the end of the process of determining what such
documents should look like in our view, given the present technological con-
straints. Parts of our view have been implemented and experimented with,
but user friendly tools for potential authors are still to be developed. There
are more technological obstacles still on our way. For instance, complete
phrasebooks are not readily available and programming facilities are still
under development to mention a few.
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